

MediaPipe

Please see https://developers.google.com/mediapipe/

Index

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/graphs_cpp
title: Building Graphs in C++
parent: Graphs
nav_order: 1

Building Graphs in C++

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

C++ graph builder is a powerful tool for:

	Building complex graphs

	Parametrizing graphs (e.g. setting a delegate on InferenceCalculator,
enabling/disabling parts of the graph)

	Deduplicating graphs (e.g. instead of CPU and GPU dedicated graphs in pbtxt
you can have a single code that constructs required graphs, sharing as much
as possible)

	Supporting optional graph inputs/outputs

	Customizing graphs per platform

Basic Usage

Let’s see how C++ graph builder can be used for a simple graph:

Graph inputs.
input_stream: "input_tensors"
input_side_packet: "model"

Graph outputs.
output_stream: "output_tensors"

node {
 calculator: "InferenceCalculator"
 input_stream: "TENSORS:input_tensors"
 input_side_packet: "MODEL:model"
 output_stream: "TENSORS:output_tensors"
 node_options: {
 [type.googleapis.com/mediapipe.InferenceCalculatorOptions] {
 # Requesting GPU delegate.
 delegate { gpu {} }
 }
 }
}

Function to build the above CalculatorGraphConfig may look like:

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Graph inputs.
 Stream<std::vector<Tensor>> input_tensors =
 graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
 SidePacket<TfLiteModelPtr> model =
 graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

 auto& inference_node = graph.AddNode("InferenceCalculator");
 auto& inference_opts =
 inference_node.GetOptions<InferenceCalculatorOptions>();
 // Requesting GPU delegate.
 inference_opts.mutable_delegate()->mutable_gpu();
 input_tensors.ConnectTo(inference_node.In("TENSORS"));
 model.ConnectTo(inference_node.SideIn("MODEL"));
 Stream<std::vector<Tensor>> output_tensors =
 inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();

 // Graph outputs.
 output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

 // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
 return graph.GetConfig();
}

Short summary:

	Use Graph::In/SideIn to get graph inputs as Stream/SidePacket

	Use Node::Out/SideOut to get node outputs as Stream/SidePacket

	Use Stream/SidePacket::ConnectTo to connect streams and side packets to
node inputs (Node::In/SideIn) and graph outputs (Graph::Out/SideOut)

	There’s a “shortcut” operator >> that you can use instead of
ConnectTo function (E.g. x >> node.In("IN")).

	Stream/SidePacket::Cast is used to cast stream or side packet of AnyType
(E.g. Stream<AnyType> in = graph.In(0);) to a particular type

	Using actual types instead of AnyType sets you on a better path for
unleashing graph builder capabilities and improving your graphs
readability.

Advanced Usage

Utility Functions

Let’s extract inference construction code into a dedicated utility function to
help for readability and code reuse:

// Updates graph to run inference.
Stream<std::vector<Tensor>> RunInference(
 Stream<std::vector<Tensor>> tensors, SidePacket<TfLiteModelPtr> model,
 const InferenceCalculatorOptions::Delegate& delegate, Graph& graph) {
 auto& inference_node = graph.AddNode("InferenceCalculator");
 auto& inference_opts =
 inference_node.GetOptions<InferenceCalculatorOptions>();
 *inference_opts.mutable_delegate() = delegate;
 tensors.ConnectTo(inference_node.In("TENSORS"));
 model.ConnectTo(inference_node.SideIn("MODEL"));
 return inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();
}

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Graph inputs.
 Stream<std::vector<Tensor>> input_tensors =
 graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
 SidePacket<TfLiteModelPtr> model =
 graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

 InferenceCalculatorOptions::Delegate delegate;
 delegate.mutable_gpu();
 Stream<std::vector<Tensor>> output_tensors =
 RunInference(input_tensors, model, delegate, graph);

 // Graph outputs.
 output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

 return graph.GetConfig();
}

As a result, RunInference provides a clear interface stating what are the
inputs/outputs and their types.

It can be easily reused, e.g. it’s only a few lines if you want to run an extra
model inference:

 // Run first inference.
 Stream<std::vector<Tensor>> output_tensors =
 RunInference(input_tensors, model, delegate, graph);
 // Run second inference on the output of the first one.
 Stream<std::vector<Tensor>> extra_output_tensors =
 RunInference(output_tensors, extra_model, delegate, graph);

And you don’t need to duplicate names and tags (InferenceCalculator,
TENSORS, MODEL) or introduce dedicated constants here and there - those
details are localized to RunInference function.

Tip: extracting RunInference and similar functions to dedicated modules (e.g.
inference.h/cc which depends on the inference calculator) enables reuse in
graphs construction code and helps automatically pull in calculator dependencies
(e.g. no need to manually add :inference_calculator dep, just let your IDE
include inference.h and build cleaner pull in corresponding dependency).

Utility Classes

And surely, it’s not only about functions, in some cases it’s beneficial to
introduce utility classes which can help making your graph construction code
more readable and less error prone.

MediaPipe offers PassThroughCalculator calculator, which is simply passing
through its inputs:

input_stream: "float_value"
input_stream: "int_value"
input_stream: "bool_value"

output_stream: "passed_float_value"
output_stream: "passed_int_value"
output_stream: "passed_bool_value"

node {
 calculator: "PassThroughCalculator"
 input_stream: "float_value"
 input_stream: "int_value"
 input_stream: "bool_value"
 # The order must be the same as for inputs (or you can use explicit indexes)
 output_stream: "passed_float_value"
 output_stream: "passed_int_value"
 output_stream: "passed_bool_value"
}

Let’s see the straightforward C++ construction code to create the above graph:

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Graph inputs.
 Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
 Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
 Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

 auto& pass_node = graph.AddNode("PassThroughCalculator");
 float_value.ConnectTo(pass_node.In("")[0]);
 int_value.ConnectTo(pass_node.In("")[1]);
 bool_value.ConnectTo(pass_node.In("")[2]);
 Stream<float> passed_float_value = pass_node.Out("")[0].Cast<float>();
 Stream<int> passed_int_value = pass_node.Out("")[1].Cast<int>();
 Stream<bool> passed_bool_value = pass_node.Out("")[2].Cast<bool>();

 // Graph outputs.
 passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
 passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
 passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

 // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
 return graph.GetConfig();
}

While pbtxt representation maybe error prone (when we have many inputs to pass
through), C++ code looks even worse: repeated empty tags and Cast calls. Let’s
see how we can do better by introducing a PassThroughNodeBuilder:

class PassThroughNodeBuilder {
 public:
 explicit PassThroughNodeBuilder(Graph& graph)
 : node_(graph.AddNode("PassThroughCalculator")) {}

 template <typename T>
 Stream<T> PassThrough(Stream<T> stream) {
 stream.ConnectTo(node_.In(index_));
 return node_.Out(index_++).Cast<T>();
 }

 private:
 int index_ = 0;
 GenericNode& node_;
};

And now graph construction code can look like:

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Graph inputs.
 Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
 Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
 Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

 PassThroughNodeBuilder pass_node_builder(graph);
 Stream<float> passed_float_value = pass_node_builder.PassThrough(float_value);
 Stream<int> passed_int_value = pass_node_builder.PassThrough(int_value);
 Stream<bool> passed_bool_value = pass_node_builder.PassThrough(bool_value);

 // Graph outputs.
 passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
 passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
 passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

 // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
 return graph.GetConfig();
}

Now you can’t have incorrect order or index in your pass through construction
code and save some typing by guessing the type for Cast from the PassThrough
input.

Tip: the same as for the RunInference function, extracting
PassThroughNodeBuilder and similar utility classes into dedicated modules
enables reuse in graph construction code and helps to automatically pull in the
corresponding calculator dependencies.

Dos and Don’ts

Define graph inputs at the very beginning if possible

Stream<D> RunSomething(Stream<A> a, Stream b, Graph& graph) {
 Stream<C> c = graph.In(2).SetName("c").Cast<C>(); // Bad.
 // ...
}

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 Stream<A> a = graph.In(0).SetName("a").Cast<A>();
 // 10/100/N lines of code.
 Stream b = graph.In(1).SetName("b").Cast() // Bad.
 Stream<D> d = RunSomething(a, b, graph);
 // ...

 return graph.GetConfig();
}

In the above code:

	It can be hard to guess how many inputs you have in the graph.

	Can be error prone overall and hard to maintain in future (e.g. is it a
correct index? name? what if some inputs are removed or made optional?
etc.).

	RunSomething reuse is limited because other graphs may have different
inputs

Instead, define your graph inputs at the very beginning of your graph builder:

Stream<D> RunSomething(Stream<A> a, Stream b, Stream<C> c, Graph& graph) {
 // ...
}

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).SetName("a").Cast<A>();
 Stream b = graph.In(1).SetName("b").Cast();
 Stream<C> c = graph.In(2).SetName("c").Cast<C>();

 // 10/100/N lines of code.
 Stream<D> d = RunSomething(a, b, c, graph);
 // ...

 return graph.GetConfig();
}

Use std::optional if you have an input stream or side packet that is not
always defined and put it at the very beginning:

std::optional<Stream<A>> a;
if (needs_a) {
 a = graph.In(0).SetName(a).Cast<A>();
}

Note: of course, there can be exceptions - for example, there can be a use case
where calling RunSomething1(..., graph), …, RunSomethingN(..., graph) is
intended to add new inputs, so afterwards you can iterate over them and feed
only added inputs into the graph. However, in any case, try to make it easy for
readers to find out what graph inputs it has or may have.

Define graph outputs at the very end

void RunSomething(Stream<Input> input, Graph& graph) {
 // ...
 node.Out("OUTPUT_F")
 .SetName("output_f").ConnectTo(graph.Out(2)); // Bad.
}

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // 10/100/N lines of code.
 node.Out("OUTPUT_D")
 .SetName("output_d").ConnectTo(graph.Out(0)); // Bad.
 // 10/100/N lines of code.
 node.Out("OUTPUT_E")
 .SetName("output_e").ConnectTo(graph.Out(1)); // Bad.
 // 10/100/N lines of code.
 RunSomething(input, graph);
 // ...

 return graph.GetConfig();
}

In the above code:

	It can be hard to guess how many outputs you have in the graph.

	Can be error prone overall and hard to maintain in future (e.g. is it a
correct index? name? what if some outpus are removed or made optional?
etc.).

	RunSomething reuse is limited as other graphs may have different outputs

Instead, define your graph outputs at the very end of your graph builder:

Stream<F> RunSomething(Stream<Input> input, Graph& graph) {
 // ...
 return node.Out("OUTPUT_F").Cast<F>();
}

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // 10/100/N lines of code.
 Stream<D> d = node.Out("OUTPUT_D").Cast<D>();
 // 10/100/N lines of code.
 Stream<E> e = node.Out("OUTPUT_E").Cast<E>();
 // 10/100/N lines of code.
 Stream<F> f = RunSomething(input, graph);
 // ...

 // Outputs.
 d.SetName("output_d").ConnectTo(graph.Out(0));
 e.SetName("output_e").ConnectTo(graph.Out(1));
 f.SetName("output_f").ConnectTo(graph.Out(2));

 return graph.GetConfig();
}

Keep nodes decoupled from each other

In MediaPipe, packet streams and side packets are as meaningful as processing
nodes. And any node input requirements and output products are expressed clearly
and independently in terms of the streams and side packets it consumes and
produces.

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).Cast<A>();

 auto& node1 = graph.AddNode("Calculator1");
 a.ConnectTo(node1.In("INPUT"));

 auto& node2 = graph.AddNode("Calculator2");
 node1.Out("OUTPUT").ConnectTo(node2.In("INPUT")); // Bad.

 auto& node3 = graph.AddNode("Calculator3");
 node1.Out("OUTPUT").ConnectTo(node3.In("INPUT_B")); // Bad.
 node2.Out("OUTPUT").ConnectTo(node3.In("INPUT_C")); // Bad.

 auto& node4 = graph.AddNode("Calculator4");
 node1.Out("OUTPUT").ConnectTo(node4.In("INPUT_B")); // Bad.
 node2.Out("OUTPUT").ConnectTo(node4.In("INPUT_C")); // Bad.
 node3.Out("OUTPUT").ConnectTo(node4.In("INPUT_D")); // Bad.

 // Outputs.
 node1.Out("OUTPUT").SetName("b").ConnectTo(graph.Out(0)); // Bad.
 node2.Out("OUTPUT").SetName("c").ConnectTo(graph.Out(1)); // Bad.
 node3.Out("OUTPUT").SetName("d").ConnectTo(graph.Out(2)); // Bad.
 node4.Out("OUTPUT").SetName("e").ConnectTo(graph.Out(3)); // Bad.

 return graph.GetConfig();
}

In the above code:

	Nodes are coupled to each other, e.g. node4 knows where its inputs are
coming from (node1, node2, node3) and it complicates refactoring,
maintenance and code reuse

	Such usage pattern is a downgrade from proto representation, where nodes
are decoupled by default.

	node#.Out("OUTPUT") calls are duplicated and readability suffers as you
could use cleaner names instead and also provide an actual type.

So, to fix the above issues you can write the following graph construction code:

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).Cast<A>();

 // `node1` usage is limited to 3 lines below.
 auto& node1 = graph.AddNode("Calculator1");
 a.ConnectTo(node1.In("INPUT"));
 Stream b = node1.Out("OUTPUT").Cast();

 // `node2` usage is limited to 3 lines below.
 auto& node2 = graph.AddNode("Calculator2");
 b.ConnectTo(node2.In("INPUT"));
 Stream<C> c = node2.Out("OUTPUT").Cast<C>();

 // `node3` usage is limited to 4 lines below.
 auto& node3 = graph.AddNode("Calculator3");
 b.ConnectTo(node3.In("INPUT_B"));
 c.ConnectTo(node3.In("INPUT_C"));
 Stream<D> d = node3.Out("OUTPUT").Cast<D>();

 // `node4` usage is limited to 5 lines below.
 auto& node4 = graph.AddNode("Calculator4");
 b.ConnectTo(node4.In("INPUT_B"));
 c.ConnectTo(node4.In("INPUT_C"));
 d.ConnectTo(node4.In("INPUT_D"));
 Stream<E> e = node4.Out("OUTPUT").Cast<E>();

 // Outputs.
 b.SetName("b").ConnectTo(graph.Out(0));
 c.SetName("c").ConnectTo(graph.Out(1));
 d.SetName("d").ConnectTo(graph.Out(2));
 e.SetName("e").ConnectTo(graph.Out(3));

 return graph.GetConfig();
}

Now, if needed, you can easily remove node1 and make b a graph input and no
updates are needed to node2, node3, node4 (same as in proto representation
by the way), because they are decoupled from each other.

Overall, the above code replicates the proto graph more closely:

input_stream: "a"

node {
 calculator: "Calculator1"
 input_stream: "INPUT:a"
 output_stream: "OUTPUT:b"
}

node {
 calculator: "Calculator2"
 input_stream: "INPUT:b"
 output_stream: "OUTPUT:C"
}

node {
 calculator: "Calculator3"
 input_stream: "INPUT_B:b"
 input_stream: "INPUT_C:c"
 output_stream: "OUTPUT:d"
}

node {
 calculator: "Calculator4"
 input_stream: "INPUT_B:b"
 input_stream: "INPUT_C:c"
 input_stream: "INPUT_D:d"
 output_stream: "OUTPUT:e"
}

output_stream: "b"
output_stream: "c"
output_stream: "d"
output_stream: "e"

On top of that, now you can extract utility functions for further reuse in other graphs:

Stream RunCalculator1(Stream<A> a, Graph& graph) {
 auto& node = graph.AddNode("Calculator1");
 a.ConnectTo(node.In("INPUT"));
 return node.Out("OUTPUT").Cast();
}

Stream<C> RunCalculator2(Stream b, Graph& graph) {
 auto& node = graph.AddNode("Calculator2");
 b.ConnectTo(node.In("INPUT"));
 return node.Out("OUTPUT").Cast<C>();
}

Stream<D> RunCalculator3(Stream b, Stream<C> c, Graph& graph) {
 auto& node = graph.AddNode("Calculator3");
 b.ConnectTo(node.In("INPUT_B"));
 c.ConnectTo(node.In("INPUT_C"));
 return node.Out("OUTPUT").Cast<D>();
}

Stream<E> RunCalculator4(Stream b, Stream<C> c, Stream<D> d, Graph& graph) {
 auto& node = graph.AddNode("Calculator4");
 b.ConnectTo(node.In("INPUT_B"));
 c.ConnectTo(node.In("INPUT_C"));
 d.ConnectTo(node.In("INPUT_D"));
 return node.Out("OUTPUT").Cast<E>();
}

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).Cast<A>();

 Stream b = RunCalculator1(a, graph);
 Stream<C> c = RunCalculator2(b, graph);
 Stream<D> d = RunCalculator3(b, c, graph);
 Stream<E> e = RunCalculator4(b, c, d, graph);

 // Outputs.
 b.SetName("b").ConnectTo(graph.Out(0));
 c.SetName("c").ConnectTo(graph.Out(1));
 d.SetName("d").ConnectTo(graph.Out(2));
 e.SetName("e").ConnectTo(graph.Out(3));

 return graph.GetConfig();
}

Separate nodes for better readability

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).Cast<A>();
 auto& node1 = graph.AddNode("Calculator1");
 a.ConnectTo(node1.In("INPUT"));
 Stream b = node1.Out("OUTPUT").Cast();
 auto& node2 = graph.AddNode("Calculator2");
 b.ConnectTo(node2.In("INPUT"));
 Stream<C> c = node2.Out("OUTPUT").Cast<C>();
 auto& node3 = graph.AddNode("Calculator3");
 b.ConnectTo(node3.In("INPUT_B"));
 c.ConnectTo(node3.In("INPUT_C"));
 Stream<D> d = node3.Out("OUTPUT").Cast<D>();
 auto& node4 = graph.AddNode("Calculator4");
 b.ConnectTo(node4.In("INPUT_B"));
 c.ConnectTo(node4.In("INPUT_C"));
 d.ConnectTo(node4.In("INPUT_D"));
 Stream<E> e = node4.Out("OUTPUT").Cast<E>();
 // Outputs.
 b.SetName("b").ConnectTo(graph.Out(0));
 c.SetName("c").ConnectTo(graph.Out(1));
 d.SetName("d").ConnectTo(graph.Out(2));
 e.SetName("e").ConnectTo(graph.Out(3));

 return graph.GetConfig();
}

In the above code, it can be hard to grasp the idea where each node begins and
ends. To improve this and help your code readers, you can simply have blank
lines before and after each node:

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).Cast<A>();

 auto& node1 = graph.AddNode("Calculator1");
 a.ConnectTo(node1.In("INPUT"));
 Stream b = node1.Out("OUTPUT").Cast();

 auto& node2 = graph.AddNode("Calculator2");
 b.ConnectTo(node2.In("INPUT"));
 Stream<C> c = node2.Out("OUTPUT").Cast<C>();

 auto& node3 = graph.AddNode("Calculator3");
 b.ConnectTo(node3.In("INPUT_B"));
 c.ConnectTo(node3.In("INPUT_C"));
 Stream<D> d = node3.Out("OUTPUT").Cast<D>();

 auto& node4 = graph.AddNode("Calculator4");
 b.ConnectTo(node4.In("INPUT_B"));
 c.ConnectTo(node4.In("INPUT_C"));
 d.ConnectTo(node4.In("INPUT_D"));
 Stream<E> e = node4.Out("OUTPUT").Cast<E>();

 // Outputs.
 b.SetName("b").ConnectTo(graph.Out(0));
 c.SetName("c").ConnectTo(graph.Out(1));
 d.SetName("d").ConnectTo(graph.Out(2));
 e.SetName("e").ConnectTo(graph.Out(3));

 return graph.GetConfig();
}

Also, the above representation matches CalculatorGraphConfig proto
representation better.

If you extract nodes into utility functions, they are scoped within functions
already and it’s clear where they begin and end, so it’s completely fine to
have:

CalculatorGraphConfig BuildGraph() {
 Graph graph;

 // Inputs.
 Stream<A> a = graph.In(0).Cast<A>();

 Stream b = RunCalculator1(a, graph);
 Stream<C> c = RunCalculator2(b, graph);
 Stream<D> d = RunCalculator3(b, c, graph);
 Stream<E> e = RunCalculator4(b, c, d, graph);

 // Outputs.
 b.SetName("b").ConnectTo(graph.Out(0));
 c.SetName("c").ConnectTo(graph.Out(1));
 d.SetName("d").ConnectTo(graph.Out(2));
 e.SetName("e").ConnectTo(graph.Out(3));

 return graph.GetConfig();
}

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/calculators
title: Calculators
parent: Framework Concepts
nav_order: 1

Calculators

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Each calculator is a node of a graph. We describe how to create a new
calculator, how to initialize a calculator, how to perform its calculations,
input and output streams, timestamps, and options. Each node in the graph is
implemented as a Calculator. The bulk of graph execution happens inside its
calculators. A calculator may receive zero or more input streams and/or side
packets and produces zero or more output streams and/or side packets.

CalculatorBase

A calculator is created by defining a new sub-class of the
CalculatorBase [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.cc]
class, implementing a number of methods, and registering the new sub-class with
Mediapipe. At a minimum, a new calculator must implement the below four methods

	GetContract()

	Calculator authors can specify the expected types of inputs and outputs
of a calculator in GetContract(). When a graph is initialized, the
framework calls a static method to verify if the packet types of the
connected inputs and outputs match the information in this
specification.

	Open()

	After a graph starts, the framework calls Open(). The input side
packets are available to the calculator at this point. Open()
interprets the node configuration operations (see Graphs)
and prepares the calculator’s per-graph-run state. This function may
also write packets to calculator outputs. An error during Open() can
terminate the graph run.

	Process()

	For a calculator with inputs, the framework calls Process() repeatedly
whenever at least one input stream has a packet available. The framework
by default guarantees that all inputs have the same timestamp (see
Synchronization for more information). Multiple
Process() calls can be invoked simultaneously when parallel execution
is enabled. If an error occurs during Process(), the framework calls
Close() and the graph run terminates.

	Close()

	After all calls to Process() finish or when all input streams close,
the framework calls Close(). This function is always called if
Open() was called and succeeded and even if the graph run terminated
because of an error. No inputs are available via any input streams
during Close(), but it still has access to input side packets and
therefore may write outputs. After Close() returns, the calculator
should be considered a dead node. The calculator object is destroyed as
soon as the graph finishes running.

The following are code snippets from
CalculatorBase.h [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.h].

class CalculatorBase {
 public:
 ...

 // The subclasses of CalculatorBase must implement GetContract.
 // ...
 static absl::Status GetContract(CalculatorContract* cc);

 // Open is called before any Process() calls, on a freshly constructed
 // calculator. Subclasses may override this method to perform necessary
 // setup, and possibly output Packets and/or set output streams' headers.
 // ...
 virtual absl::Status Open(CalculatorContext* cc) {
 return absl::OkStatus();
 }

 // Processes the incoming inputs. May call the methods on cc to access
 // inputs and produce outputs.
 // ...
 virtual absl::Status Process(CalculatorContext* cc) = 0;

 // Is called if Open() was called and succeeded. Is called either
 // immediately after processing is complete or after a graph run has ended
 // (if an error occurred in the graph). ...
 virtual absl::Status Close(CalculatorContext* cc) {
 return absl::OkStatus();
 }

 ...
};

Life of a calculator

During initialization of a MediaPipe graph, the framework calls a
GetContract() static method to determine what kinds of packets are expected.

The framework constructs and destroys the entire calculator for each graph run
(e.g. once per video or once per image). Expensive or large objects that remain
constant across graph runs should be supplied as input side packets so the
calculations are not repeated on subsequent runs.

After initialization, for each run of the graph, the following sequence occurs:

	Open()

	Process() (repeatedly)

	Close()

The framework calls Open() to initialize the calculator. Open() should
interpret any options and set up the calculator’s per-graph-run state. Open()
may obtain input side packets and write packets to calculator outputs. If
appropriate, it should call SetOffset() to reduce potential packet buffering
of input streams.

If an error occurs during Open() or Process() (as indicated by one of them
returning a non-Ok status), the graph run is terminated with no further calls
to the calculator’s methods, and the calculator is destroyed.

For a calculator with inputs, the framework calls Process() whenever at least
one input has a packet available. The framework guarantees that inputs all have
the same timestamp, that timestamps increase with each call to Process() and
that all packets are delivered. As a consequence, some inputs may not have any
packets when Process() is called. An input whose packet is missing appears to
produce an empty packet (with no timestamp).

The framework calls Close() after all calls to Process(). All inputs will
have been exhausted, but Close() has access to input side packets and may
write outputs. After Close returns, the calculator is destroyed.

Calculators with no inputs are referred to as sources. A source calculator
continues to have Process() called as long as it returns an Ok status. A
source calculator indicates that it is exhausted by returning a stop status
(i.e. mediaPipe::tool::StatusStop() [https://github.com/google/mediapipe/tree/master/mediapipe/framework/tool/status_util.cc].).

Identifying inputs and outputs

The public interface to a calculator consists of a set of input streams and
output streams. In a CalculatorGraphConfiguration, the outputs from some
calculators are connected to the inputs of other calculators using named
streams. Stream names are normally lowercase, while input and output tags are
normally UPPERCASE. In the example below, the output with tag name VIDEO is
connected to the input with tag name VIDEO_IN using the stream named
video_stream.

Graph describing calculator SomeAudioVideoCalculator
node {
 calculator: "SomeAudioVideoCalculator"
 input_stream: "INPUT:combined_input"
 output_stream: "VIDEO:video_stream"
}
node {
 calculator: "SomeVideoCalculator"
 input_stream: "VIDEO_IN:video_stream"
 output_stream: "VIDEO_OUT:processed_video"
}

Input and output streams can be identified by index number, by tag name, or by a
combination of tag name and index number. You can see some examples of input and
output identifiers in the example below. SomeAudioVideoCalculator identifies
its video output by tag and its audio outputs by the combination of tag and
index. The input with tag VIDEO is connected to the stream named
video_stream. The outputs with tag AUDIO and indices 0 and 1 are
connected to the streams named audio_left and audio_right.
SomeAudioCalculator identifies its audio inputs by index only (no tag needed).

Graph describing calculator SomeAudioVideoCalculator
node {
 calculator: "SomeAudioVideoCalculator"
 input_stream: "combined_input"
 output_stream: "VIDEO:video_stream"
 output_stream: "AUDIO:0:audio_left"
 output_stream: "AUDIO:1:audio_right"
}

node {
 calculator: "SomeAudioCalculator"
 input_stream: "audio_left"
 input_stream: "audio_right"
 output_stream: "audio_energy"
}

In the calculator implementation, inputs and outputs are also identified by tag
name and index number. In the function below input and output are identified:

	By index number: The combined input stream is identified simply by index
0.

	By tag name: The video output stream is identified by tag name “VIDEO”.

	By tag name and index number: The output audio streams are identified by the
combination of the tag name AUDIO and the index numbers 0 and 1.

// c++ Code snippet describing the SomeAudioVideoCalculator GetContract() method
class SomeAudioVideoCalculator : public CalculatorBase {
 public:
 static absl::Status GetContract(CalculatorContract* cc) {
 cc->Inputs().Index(0).SetAny();
 // SetAny() is used to specify that whatever the type of the
 // stream is, it's acceptable. This does not mean that any
 // packet is acceptable. Packets in the stream still have a
 // particular type. SetAny() has the same effect as explicitly
 // setting the type to be the stream's type.
 cc->Outputs().Tag("VIDEO").Set<ImageFrame>();
 cc->Outputs().Get("AUDIO", 0).Set<Matrix>();
 cc->Outputs().Get("AUDIO", 1).Set<Matrix>();
 return absl::OkStatus();
 }

Processing

Process() called on a non-source node must return absl::OkStatus() to
indicate that all went well, or any other status code to signal an error

If a non-source calculator returns tool::StatusStop(), then this signals the
graph is being cancelled early. In this case, all source calculators and graph
input streams will be closed (and remaining Packets will propagate through the
graph).

A source node in a graph will continue to have Process() called on it as long
as it returns absl::OkStatus(). To indicate that there is no more data to be
generated return tool::StatusStop(). Any other status indicates an error has
occurred.

Close() returns absl::OkStatus() to indicate success. Any other status
indicates a failure.

Here is the basic Process() function. It uses the Input() method (which can
be used only if the calculator has a single input) to request its input data. It
then uses std::unique_ptr to allocate the memory needed for the output packet,
and does the calculations. When done it releases the pointer when adding it to
the output stream.

absl::Status MyCalculator::Process() {
 const Matrix& input = Input()->Get<Matrix>();
 std::unique_ptr<Matrix> output(new Matrix(input.rows(), input.cols()));
 // do your magic here....
 // output->row(n) = ...
 Output()->Add(output.release(), InputTimestamp());
 return absl::OkStatus();
}

Calculator options

Calculators accept processing parameters through (1) input stream packets (2)
input side packets, and (3) calculator options. Calculator options, if
specified, appear as literal values in the node_options field of the
CalculatorGraphConfiguration.Node message.

 node {
 calculator: "TfLiteInferenceCalculator"
 input_stream: "TENSORS:main_model_input"
 output_stream: "TENSORS:main_model_output"
 node_options: {
 [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
 model_path: "mediapipe/models/detection_model.tflite"
 }
 }
 }

The node_options field accepts the proto3 syntax. Alternatively, calculator
options can be specified in the options field using proto2 syntax.

 node {
 calculator: "TfLiteInferenceCalculator"
 input_stream: "TENSORS:main_model_input"
 output_stream: "TENSORS:main_model_output"
 node_options: {
 [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
 model_path: "mediapipe/models/detection_model.tflite"
 }
 }
 }

Not all calculators accept calcuator options. In order to accept options, a
calculator will normally define a new protobuf message type to represent its
options, such as PacketClonerCalculatorOptions. The calculator will then
read that protobuf message in its CalculatorBase::Open method, and possibly
also in its CalculatorBase::GetContract function or its
CalculatorBase::Process method. Normally, the new protobuf message type will
be defined as a protobuf schema using a “.proto” file and a
mediapipe_proto_library() build rule.

 mediapipe_proto_library(
 name = "packet_cloner_calculator_proto",
 srcs = ["packet_cloner_calculator.proto"],
 visibility = ["//visibility:public"],
 deps = [
 "//mediapipe/framework:calculator_options_proto",
 "//mediapipe/framework:calculator_proto",
],
)

Example calculator

This section discusses the implementation of PacketClonerCalculator, which
does a relatively simple job, and is used in many calculator graphs.
PacketClonerCalculator simply produces a copy of its most recent input packets
on demand.

PacketClonerCalculator is useful when the timestamps of arriving data packets
are not aligned perfectly. Suppose we have a room with a microphone, light
sensor and a video camera that is collecting sensory data. Each of the sensors
operates independently and collects data intermittently. Suppose that the output
of each sensor is:

	microphone = loudness in decibels of sound in the room (Integer)

	light sensor = brightness of room (Integer)

	video camera = RGB image frame of room (ImageFrame)

Our simple perception pipeline is designed to process sensory data from these 3
sensors such that at any time when we have image frame data from the camera that
is synchronized with the last collected microphone loudness data and light
sensor brightness data. To do this with MediaPipe, our perception pipeline has 3
input streams:

	room_mic_signal - Each packet of data in this input stream is integer data
representing how loud audio is in a room with timestamp.

	room_lightening_sensor - Each packet of data in this input stream is integer
data representing how bright is the room illuminated with timestamp.

	room_video_tick_signal - Each packet of data in this input stream is
imageframe of video data representing video collected from camera in the
room with timestamp.

Below is the implementation of the PacketClonerCalculator. You can see the
GetContract(), Open(), and Process() methods as well as the instance
variable current_ which holds the most recent input packets.

// This takes packets from N+1 streams, A_1, A_2, ..., A_N, B.
// For every packet that appears in B, outputs the most recent packet from each
// of the A_i on a separate stream.

#include <vector>

#include "absl/strings/str_cat.h"
#include "mediapipe/framework/calculator_framework.h"

namespace mediapipe {

// For every packet received on the last stream, output the latest packet
// obtained on all other streams. Therefore, if the last stream outputs at a
// higher rate than the others, this effectively clones the packets from the
// other streams to match the last.
//
// Example config:
// node {
// calculator: "PacketClonerCalculator"
// input_stream: "first_base_signal"
// input_stream: "second_base_signal"
// input_stream: "tick_signal"
// output_stream: "cloned_first_base_signal"
// output_stream: "cloned_second_base_signal"
// }
//
class PacketClonerCalculator : public CalculatorBase {
 public:
 static absl::Status GetContract(CalculatorContract* cc) {
 const int tick_signal_index = cc->Inputs().NumEntries() - 1;
 // cc->Inputs().NumEntries() returns the number of input streams
 // for the PacketClonerCalculator
 for (int i = 0; i < tick_signal_index; ++i) {
 cc->Inputs().Index(i).SetAny();
 // cc->Inputs().Index(i) returns the input stream pointer by index
 cc->Outputs().Index(i).SetSameAs(&cc->Inputs().Index(i));
 }
 cc->Inputs().Index(tick_signal_index).SetAny();
 return absl::OkStatus();
 }

 absl::Status Open(CalculatorContext* cc) final {
 tick_signal_index_ = cc->Inputs().NumEntries() - 1;
 current_.resize(tick_signal_index_);
 // Pass along the header for each stream if present.
 for (int i = 0; i < tick_signal_index_; ++i) {
 if (!cc->Inputs().Index(i).Header().IsEmpty()) {
 cc->Outputs().Index(i).SetHeader(cc->Inputs().Index(i).Header());
 // Sets the output stream of index i header to be the same as
 // the header for the input stream of index i
 }
 }
 return absl::OkStatus();
 }

 absl::Status Process(CalculatorContext* cc) final {
 // Store input signals.
 for (int i = 0; i < tick_signal_index_; ++i) {
 if (!cc->Inputs().Index(i).Value().IsEmpty()) {
 current_[i] = cc->Inputs().Index(i).Value();
 }
 }

 // Output if the tick signal is non-empty.
 if (!cc->Inputs().Index(tick_signal_index_).Value().IsEmpty()) {
 for (int i = 0; i < tick_signal_index_; ++i) {
 if (!current_[i].IsEmpty()) {
 cc->Outputs().Index(i).AddPacket(
 current_[i].At(cc->InputTimestamp()));
 // Add a packet to output stream of index i a packet from inputstream i
 // with timestamp common to all present inputs
 } else {
 cc->Outputs().Index(i).SetNextTimestampBound(
 cc->InputTimestamp().NextAllowedInStream());
 // if current_[i], 1 packet buffer for input stream i is empty, we will set
 // next allowed timestamp for input stream i to be current timestamp + 1
 }
 }
 }
 return absl::OkStatus();
 }

 private:
 std::vector<Packet> current_;
 int tick_signal_index_;
};

REGISTER_CALCULATOR(PacketClonerCalculator);
} // namespace mediapipe

Typically, a calculator has only a .cc file. No .h is required, because
mediapipe uses registration to make calculators known to it. After you have
defined your calculator class, register it with a macro invocation
REGISTER_CALCULATOR(calculator_class_name).

Below is a trivial MediaPipe graph that has 3 input streams, 1 node
(PacketClonerCalculator) and 2 output streams.

input_stream: "room_mic_signal"
input_stream: "room_lighting_sensor"
input_stream: "room_video_tick_signal"

node {
 calculator: "PacketClonerCalculator"
 input_stream: "room_mic_signal"
 input_stream: "room_lighting_sensor"
 input_stream: "room_video_tick_signal"
 output_stream: "cloned_room_mic_signal"
 output_stream: "cloned_lighting_sensor"
 }

The diagram below shows how the PacketClonerCalculator defines its output
packets (bottom) based on its series of input packets (top).

[image: ../_images/packet_cloner_calculator.png]Graph using PacketClonerCalculator |
:————————————————————————–: |
Each time it receives a packet on its TICK input stream, the PacketClonerCalculator outputs the most recent packet from each of its input streams. The sequence of output packets (bottom) is determined by the sequence of input packets (top) and their timestamps. The timestamps are shown along the right side of the diagram. |

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/overview
title: Framework Concepts
nav_order: 5
has_children: true
has_toc: false

Framework Concepts

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

The basics

Packet

The basic data flow unit. A packet consists of a numeric timestamp and a shared
pointer to an immutable payload. The payload can be of any C++ type, and the
payload’s type is also referred to as the type of the packet. Packets are value
classes and can be copied cheaply. Each copy shares ownership of the payload,
with reference-counting semantics. Each copy has its own timestamp. See also
Packet.

Graph

MediaPipe processing takes place inside a graph, which defines packet flow paths
between nodes. A graph can have any number of inputs and outputs, and data
flow can branch and merge. Generally data flows forward, but backward loops are
possible. See Graphs for details.

Nodes

Nodes produce and/or consume packets, and they are where the bulk of the graph’s
work takes place. They are also known as “calculators”, for historical reasons.
Each node’s interface defines a number of input and output ports, identified
by a tag and/or an index. See Calculators for details.

Streams

A stream is a connection between two nodes that carries a sequence of packets,
whose timestamps must be monotonically increasing.

Side packets

A side packet connection between nodes carries a single packet (with unspecified
timestamp). It can be used to provide some data that will remain constant,
whereas a stream represents a flow of data that changes over time.

Packet Ports

A port has an associated type; packets transiting through the port must be of
that type. An output stream port can be connected to any number of input stream
ports of the same type; each consumer receives a separate copy of the output
packets, and has its own queue, so it can consume them at its own pace.
Similarly, a side packet output port can be connected to as many side packet
input ports as desired.

A port can be required, meaning that a connection must be made for the graph to
be valid, or optional, meaning it may remain unconnected.

Note: even if a stream connection is required, the stream may not carry a packet
for all timestamps.

Input and output

Data flow can originate from source nodes, which have no input streams and
produce packets spontaneously (e.g. by reading from a file); or from graph
input streams, which let an application feed packets into a graph.

Similarly, there are sink nodes that receive data and write it to various
destinations (e.g. a file, a memory buffer, etc.), and an application can also
receive output from the graph using callbacks.

Runtime behavior

Graph lifetime

Once a graph has been initialized, it can be started to begin processing
data, and can process a stream of packets until each stream is closed or the
graph is canceled. Then the graph can be destroyed or started again.

Node lifetime

There are three main lifetime methods the framework will call on a node:

	Open: called once, before the other methods. When it is called, all input
side packets required by the node will be available.

	Process: called multiple times, when a new set of inputs is available,
according to the node’s input policy.

	Close: called once, at the end.

In addition, each calculator can define constructor and destructor, which are
useful for creating and deallocating resources that are independent of the
processed data.

Input policies

The default input policy is deterministic collation of packets by timestamp. A
node receives all inputs for the same timestamp at the same time, in an
invocation of its Process method; and successive input sets are received in
their timestamp order. This can require delaying the processing of some packets
until a packet with the same timestamp is received on all input streams, or
until it can be guaranteed that a packet with that timestamp will not be
arriving on the streams that have not received it.

Other policies are also available, implemented using a separate kind of
component known as an InputStreamHandler.

See Synchronization for more details.

Real-time streams

MediaPipe calculator graphs are often used to process streams of video or audio
frames for interactive applications. Normally, each Calculator runs as soon as
all of its input packets for a given timestamp become available. Calculators
used in real-time graphs need to define output timestamp bounds based on input
timestamp bounds in order to allow downstream calculators to be scheduled
promptly. See Real-time Streams for details.

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/gpu
title: GPU
parent: Framework Concepts
nav_order: 5

GPU

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Overview

MediaPipe supports calculator nodes for GPU compute and rendering, and allows combining multiple GPU nodes, as well as mixing them with CPU based calculator nodes. There exist several GPU APIs on mobile platforms (eg, OpenGL ES, Metal and Vulkan). MediaPipe does not attempt to offer a single cross-API GPU abstraction. Individual nodes can be written using different APIs, allowing them to take advantage of platform specific features when needed.

GPU support is essential for good performance on mobile platforms, especially for real-time video. MediaPipe enables developers to write GPU compatible calculators that support the use of GPU for:

	On-device real-time processing, not just batch processing

	Video rendering and effects, not just analysis

Below are the design principles for GPU support in MediaPipe

	GPU-based calculators should be able to occur anywhere in the graph, and not necessarily be used for on-screen rendering.

	Transfer of frame data from one GPU-based calculator to another should be fast, and not incur expensive copy operations.

	Transfer of frame data between CPU and GPU should be as efficient as the platform allows.

	Because different platforms may require different techniques for best performance, the API should allow flexibility in the way things are implemented behind the scenes.

	A calculator should be allowed maximum flexibility in using the GPU for all or part of its operation, combining it with the CPU if necessary.

OpenGL ES Support

MediaPipe supports OpenGL ES up to version 3.2 on Android/Linux and up to ES 3.0
on iOS. In addition, MediaPipe also supports Metal on iOS.

OpenGL ES 3.1 or greater is required (on Android/Linux systems) for running
machine learning inference calculators and graphs.

MediaPipe allows graphs to run OpenGL in multiple GL contexts. For example, this
can be very useful in graphs that combine a slower GPU inference path (eg, at 10
FPS) with a faster GPU rendering path (eg, at 30 FPS): since one GL context
corresponds to one sequential command queue, using the same context for both
tasks would reduce the rendering frame rate.

One challenge MediaPipe’s use of multiple contexts solves is the ability to
communicate across them. An example scenario is one with an input video that is
sent to both the rendering and inferences paths, and rendering needs to have
access to the latest output from inference.

An OpenGL context cannot be accessed by multiple threads at the same time.
Furthermore, switching the active GL context on the same thread can be slow on
some Android devices. Therefore, our approach is to have one dedicated thread
per context. Each thread issues GL commands, building up a serial command queue
on its context, which is then executed by the GPU asynchronously.

Life of a GPU Calculator

This section presents the basic structure of the Process method of a GPU
calculator derived from base class GlSimpleCalculator. The GPU calculator
LuminanceCalculator is shown as an example. The method
LuminanceCalculator::GlRender is called from GlSimpleCalculator::Process.

// Converts RGB images into luminance images, still stored in RGB format.
// See GlSimpleCalculator for inputs, outputs and input side packets.
class LuminanceCalculator : public GlSimpleCalculator {
 public:
 absl::Status GlSetup() override;
 absl::Status GlRender(const GlTexture& src,
 const GlTexture& dst) override;
 absl::Status GlTeardown() override;

 private:
 GLuint program_ = 0;
 GLint frame_;
};
REGISTER_CALCULATOR(LuminanceCalculator);

absl::Status LuminanceCalculator::GlRender(const GlTexture& src,
 const GlTexture& dst) {
 static const GLfloat square_vertices[] = {
 -1.0f, -1.0f, // bottom left
 1.0f, -1.0f, // bottom right
 -1.0f, 1.0f, // top left
 1.0f, 1.0f, // top right
 };
 static const GLfloat texture_vertices[] = {
 0.0f, 0.0f, // bottom left
 1.0f, 0.0f, // bottom right
 0.0f, 1.0f, // top left
 1.0f, 1.0f, // top right
 };

 // program
 glUseProgram(program_);
 glUniform1i(frame_, 1);

 // vertex storage
 GLuint vbo[2];
 glGenBuffers(2, vbo);
 GLuint vao;
 glGenVertexArrays(1, &vao);
 glBindVertexArray(vao);

 // vbo 0
 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
 glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), square_vertices,
 GL_STATIC_DRAW);
 glEnableVertexAttribArray(ATTRIB_VERTEX);
 glVertexAttribPointer(ATTRIB_VERTEX, 2, GL_FLOAT, 0, 0, nullptr);

 // vbo 1
 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
 glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), texture_vertices,
 GL_STATIC_DRAW);
 glEnableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
 glVertexAttribPointer(ATTRIB_TEXTURE_POSITION, 2, GL_FLOAT, 0, 0, nullptr);

 // draw
 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 // cleanup
 glDisableVertexAttribArray(ATTRIB_VERTEX);
 glDisableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindVertexArray(0);
 glDeleteVertexArrays(1, &vao);
 glDeleteBuffers(2, vbo);

 return absl::OkStatus();
}

The design principles mentioned above have resulted in the following design
choices for MediaPipe GPU support:

	We have a GPU data type, called GpuBuffer, for representing image data, optimized for GPU usage. The exact contents of this data type are opaque and platform-specific.

	A low-level API based on composition, where any calculator that wants to make use of the GPU creates and owns an instance of the GlCalculatorHelper class. This class offers a platform-agnostic API for managing the OpenGL context, setting up textures for inputs and outputs, etc.

	A high-level API based on subclassing, where simple calculators implementing image filters subclass from GlSimpleCalculator and only need to override a couple of virtual methods with their specific OpenGL code, while the superclass takes care of all the plumbing.

	Data that needs to be shared between all GPU-based calculators is provided as a external input that is implemented as a graph service and is managed by the GlCalculatorHelper class.

	The combination of calculator-specific helpers and a shared graph service allows us great flexibility in managing the GPU resource: we can have a separate context per calculator, share a single context, share a lock or other synchronization primitives, etc. – and all of this is managed by the helper and hidden from the individual calculators.

GpuBuffer to ImageFrame Converters

We provide two calculators called GpuBufferToImageFrameCalculator and ImageFrameToGpuBufferCalculator. These calculators convert between ImageFrame and GpuBuffer, allowing the construction of graphs that combine GPU and CPU calculators. They are supported on both iOS and Android

When possible, these calculators use platform-specific functionality to share data between the CPU and the GPU without copying.

The below diagram shows the data flow in a mobile application that captures video from the camera, runs it through a MediaPipe graph, and renders the output on the screen in real time. The dashed line indicates which parts are inside the MediaPipe graph proper. This application runs a Canny edge-detection filter on the CPU using OpenCV, and overlays it on top of the original video using the GPU.

[image: ../_images/gpu_example_graph.png]How GPU calculators interact

Video frames from the camera are fed into the graph as GpuBuffer packets. The
input stream is accessed by two calculators in parallel.
GpuBufferToImageFrameCalculator converts the buffer into an ImageFrame,
which is then sent through a grayscale converter and a canny filter (both based
on OpenCV and running on the CPU), whose output is then converted into a
GpuBuffer again. A multi-input GPU calculator, GlOverlayCalculator, takes as
input both the original GpuBuffer and the one coming out of the edge detector,
and overlays them using a shader. The output is then sent back to the
application using a callback calculator, and the application renders the image
to the screen using OpenGL.

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/graphs
title: Graphs
parent: Framework Concepts
nav_order: 2

Graphs

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Graph

A CalculatorGraphConfig proto specifies the topology and functionality of a
MediaPipe graph. Each node in the graph represents a particular calculator or
subgraph, and specifies necessary configurations, such as registered
calculator/subgraph type, inputs, outputs and optional fields, such as
node-specific options, input policy and executor, discussed in
Synchronization.

CalculatorGraphConfig has several other fields to configure global graph-level
settings, e.g. graph executor configs, number of threads, and maximum queue size
of input streams. Several graph-level settings are useful for tuning the
performance of the graph on different platforms (e.g., desktop v.s. mobile). For
instance, on mobile, attaching a heavy model-inference calculator to a separate
executor can improve the performance of a real-time application since this
enables thread locality.

Below is a trivial CalculatorGraphConfig example where we have series of
passthrough calculators :

This graph named main_pass_throughcals_nosubgraph.pbtxt contains 4
passthrough calculators.
input_stream: "in"
output_stream: "out"
node {
 calculator: "PassThroughCalculator"
 input_stream: "in"
 output_stream: "out1"
}
node {
 calculator: "PassThroughCalculator"
 input_stream: "out1"
 output_stream: "out2"
}
node {
 calculator: "PassThroughCalculator"
 input_stream: "out2"
 output_stream: "out3"
}
node {
 calculator: "PassThroughCalculator"
 input_stream: "out3"
 output_stream: "out"
}

MediaPipe offers an alternative C++ representation for complex graphs (e.g. ML pipelines, handling model metadata, optional nodes, etc.). The above graph may look like:

CalculatorGraphConfig BuildGraphConfig() {
 Graph graph;

 // Graph inputs
 Stream<AnyType> in = graph.In(0).SetName("in");

 auto pass_through_fn = [](Stream<AnyType> in,
 Graph& graph) -> Stream<AnyType> {
 auto& node = graph.AddNode("PassThroughCalculator");
 in.ConnectTo(node.In(0));
 return node.Out(0);
 };

 Stream<AnyType> out1 = pass_through_fn(in, graph);
 Stream<AnyType> out2 = pass_through_fn(out1, graph);
 Stream<AnyType> out3 = pass_through_fn(out2, graph);
 Stream<AnyType> out4 = pass_through_fn(out3, graph);

 // Graph outputs
 out4.SetName("out").ConnectTo(graph.Out(0));

 return graph.GetConfig();
}

See more details in Building Graphs in C++

Subgraph

To modularize a CalculatorGraphConfig into sub-modules and assist with re-use
of perception solutions, a MediaPipe graph can be defined as a Subgraph. The
public interface of a subgraph consists of a set of input and output streams
similar to a calculator’s public interface. The subgraph can then be included in
a CalculatorGraphConfig as if it were a calculator. When a MediaPipe graph is
loaded from a CalculatorGraphConfig, each subgraph node is replaced by the
corresponding graph of calculators. As a result, the semantics and performance
of the subgraph is identical to the corresponding graph of calculators.

Below is an example of how to create a subgraph named TwoPassThroughSubgraph.

	Defining the subgraph.

This subgraph is defined in two_pass_through_subgraph.pbtxt
and is registered as "TwoPassThroughSubgraph"

type: "TwoPassThroughSubgraph"
input_stream: "out1"
output_stream: "out3"

node {
 calculator: "PassThroughCalculator"
 input_stream: "out1"
 output_stream: "out2"
}
node {
 calculator: "PassThroughCalculator"
 input_stream: "out2"
 output_stream: "out3"
}

The public interface to the subgraph consists of:

	Graph input streams

	Graph output streams

	Graph input side packets

	Graph output side packets

	Register the subgraph using BUILD rule mediapipe_simple_subgraph. The
parameter register_as defines the component name for the new subgraph.

Small section of BUILD file for registering the "TwoPassThroughSubgraph"
subgraph for use by main graph main_pass_throughcals.pbtxt

mediapipe_simple_subgraph(
 name = "twopassthrough_subgraph",
 graph = "twopassthrough_subgraph.pbtxt",
 register_as = "TwoPassThroughSubgraph",
 deps = [
 "//mediapipe/calculators/core:pass_through_calculator",
 "//mediapipe/framework:calculator_graph",
],
)

	Use the subgraph in the main graph.

This main graph is defined in main_pass_throughcals.pbtxt
using subgraph called "TwoPassThroughSubgraph"

input_stream: "in"
node {
 calculator: "PassThroughCalculator"
 input_stream: "in"
 output_stream: "out1"
}
node {
 calculator: "TwoPassThroughSubgraph"
 input_stream: "out1"
 output_stream: "out3"
}
node {
 calculator: "PassThroughCalculator"
 input_stream: "out3"
 output_stream: "out4"
}

Graph Options

It is possible to specify a “graph options” protobuf for a MediaPipe graph
similar to the Calculator Options
protobuf specified for a MediaPipe calculator. These “graph options” can be
specified where a graph is invoked, and used to populate calculator options and
subgraph options within the graph.

In a CalculatorGraphConfig, graph options can be specified for a subgraph
exactly like calculator options, as shown below:

node {
 calculator: "FlowLimiterCalculator"
 input_stream: "image"
 output_stream: "throttled_image"
 node_options: {
 [type.googleapis.com/mediapipe.FlowLimiterCalculatorOptions] {
 max_in_flight: 1
 }
 }
}

node {
 calculator: "FaceDetectionSubgraph"
 input_stream: "IMAGE:throttled_image"
 node_options: {
 [type.googleapis.com/mediapipe.FaceDetectionOptions] {
 tensor_width: 192
 tensor_height: 192
 }
 }
}

In a CalculatorGraphConfig, graph options can be accepted and used to populate
calculator options, as shown below:

graph_options: {
 [type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}

node: {
 calculator: "ImageToTensorCalculator"
 input_stream: "IMAGE:image"
 node_options: {
 [type.googleapis.com/mediapipe.ImageToTensorCalculatorOptions] {
 keep_aspect_ratio: true
 border_mode: BORDER_ZERO
 }
 }
 option_value: "output_tensor_width:options/tensor_width"
 option_value: "output_tensor_height:options/tensor_height"
}

node {
 calculator: "InferenceCalculator"
 node_options: {
 [type.googleapis.com/mediapipe.InferenceCalculatorOptions] {}
 }
 option_value: "delegate:options/delegate"
 option_value: "model_path:options/model_path"
}

In this example, the FaceDetectionSubgraph accepts graph option protobuf
FaceDetectionOptions. The FaceDetectionOptions is used to define some field
values in the calculator options ImageToTensorCalculatorOptions and some field
values in the subgraph options InferenceCalculatorOptions. The field values
are defined using the option_value: syntax.

In the CalculatorGraphConfig::Node protobuf, the fields node_options: and
option_value: together define the option values for a calculator such as
ImageToTensorCalculator. The node_options: field defines a set of literal
constant values using the text protobuf syntax. Each option_value: field
defines the value for one protobuf field using information from the enclosing
graph, specifically from field values of the graph options of the enclosing
graph. In the example above, the option_value:
"output_tensor_width:options/tensor_width" defines the field
ImageToTensorCalculatorOptions.output_tensor_width using the value of
FaceDetectionOptions.tensor_width.

The syntax of option_value: is similar to the syntax of input_stream:. The
syntax is option_value: "LHS:RHS". The LHS identifies a calculator option
field and the RHS identifies a graph option field. More specifically, the LHS
and RHS each consists of a series of protobuf field names identifying nested
protobuf messages and fields separated by ‘/’. This is known as the “ProtoPath”
syntax. Nested messages that are referenced in the LHS or RHS must already be
defined in the enclosing protobuf in order to be traversed using
option_value:.

Cycles

By default, MediaPipe requires calculator graphs to be acyclic and treats cycles
in a graph as errors. If a graph is intended to have cycles, the cycles need to
be annotated in the graph config. This page describes how to do that.

NOTE: The current approach is experimental and subject to change. We welcome
your feedback.

Please use the CalculatorGraphTest.Cycle unit test in
mediapipe/framework/calculator_graph_test.cc as sample code. Shown below is
the cyclic graph in the test. The sum output of the adder is the sum of the
integers generated by the integer source calculator.

[image: A cyclic graph]a cyclic graph that adds a stream of integers

This simple graph illustrates all the issues in supporting cyclic graphs.

Back Edge Annotation

We require that an edge in each cycle be annotated as a back edge. This allows
MediaPipe’s topological sort to work, after removing all the back edges.

There are usually multiple ways to select the back edges. Which edges are marked
as back edges affects which nodes are considered as upstream and which nodes are
considered as downstream, which in turn affects the priorities MediaPipe assigns
to the nodes.

For example, the CalculatorGraphTest.Cycle test marks the old_sum edge as a
back edge, so the Delay node is considered as a downstream node of the adder
node and is given a higher priority. Alternatively, we could mark the sum
input to the delay node as the back edge, in which case the delay node would be
considered as an upstream node of the adder node and is given a lower priority.

Initial Packet

For the adder calculator to be runnable when the first integer from the integer
source arrives, we need an initial packet, with value 0 and with the same
timestamp, on the old_sum input stream to the adder. This initial packet
should be output by the delay calculator in the Open() method.

Delay in a Loop

Each loop should incur a delay to align the previous sum output with the next
integer input. This is also done by the delay node. So the delay node needs to
know the following about the timestamps of the integer source calculator:

	The timestamp of the first output.

	The timestamp delta between successive outputs.

We plan to add an alternative scheduling policy that only cares about packet
ordering and ignores packet timestamps, which will eliminate this inconvenience.

Early Termination of a Calculator When One Input Stream is Done

By default, MediaPipe calls the Close() method of a non-source calculator when
all of its input streams are done. In the example graph, we want to stop the
adder node as soon as the integer source is done. This is accomplished by
configuring the adder node with an alternative input stream handler,
EarlyCloseInputStreamHandler.

Relevant Source Code

Delay Calculator

Note the code in Open() that outputs the initial packet and the code in
Process() that adds a (unit) delay to input packets. As noted above, this
delay node assumes that its output stream is used alongside an input stream with
packet timestamps 0, 1, 2, 3, …

class UnitDelayCalculator : public Calculator {
 public:
 static absl::Status FillExpectations(
 const CalculatorOptions& extendable_options, PacketTypeSet* inputs,
 PacketTypeSet* outputs, PacketTypeSet* input_side_packets) {
 inputs->Index(0)->Set<int>("An integer.");
 outputs->Index(0)->Set<int>("The input delayed by one time unit.");
 return absl::OkStatus();
 }

 absl::Status Open() final {
 Output()->Add(new int(0), Timestamp(0));
 return absl::OkStatus();
 }

 absl::Status Process() final {
 const Packet& packet = Input()->Value();
 Output()->AddPacket(packet.At(packet.Timestamp().NextAllowedInStream()));
 return absl::OkStatus();
 }
};

Graph Config

Note the back_edge annotation and the alternative input_stream_handler.

node {
 calculator: 'GlobalCountSourceCalculator'
 input_side_packet: 'global_counter'
 output_stream: 'integers'
}
node {
 calculator: 'IntAdderCalculator'
 input_stream: 'integers'
 input_stream: 'old_sum'
 input_stream_info: {
 tag_index: ':1' # 'old_sum'
 back_edge: true
 }
 output_stream: 'sum'
 input_stream_handler {
 input_stream_handler: 'EarlyCloseInputStreamHandler'
 }
}
node {
 calculator: 'UnitDelayCalculator'
 input_stream: 'sum'
 output_stream: 'old_sum'
}

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/packets
title: Packets
parent: Framework Concepts
nav_order: 3

Packets

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Calculators communicate by sending and receiving packets. Typically a single
packet is sent along each input stream at each input timestamp. A packet can
contain any kind of data, such as a single frame of video or a single integer
detection count.

Creating a packet

Packets are generally created with mediapipe::MakePacket<T>() or
mediapipe::Adopt() (from packet.h).

// Create a packet containing some new data.
Packet p = MakePacket<MyDataClass>("constructor_argument");
// Make a new packet with the same data and a different timestamp.
Packet p2 = p.At(Timestamp::PostStream());

or:

// Create some new data.
auto data = absl::make_unique<MyDataClass>("constructor_argument");
// Create a packet to own the data.
Packet p = Adopt(data.release()).At(Timestamp::PostStream());

Data within a packet is accessed with Packet::Get<T>()

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/realtime_streams
title: Real-time Streams
parent: Framework Concepts
nav_order: 6

Real-time Streams

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Real-time timestamps

MediaPipe calculator graphs are often used to process streams of video or audio
frames for interactive applications. The MediaPipe framework requires only that
successive packets be assigned monotonically increasing timestamps. By
convention, real-time calculators and graphs use the recording time or the
presentation time of each frame as its timestamp, with each timestamp indicating
the microseconds since Jan/1/1970:00:00:00. This allows packets from various
sources to be processed in a globally consistent sequence.

Real-time scheduling

Normally, each Calculator runs as soon as all of its input packets for a given
timestamp become available. Normally, this happens when the calculator has
finished processing the previous frame, and each of the calculators producing
its inputs have finished processing the current frame. The MediaPipe scheduler
invokes each calculator as soon as these conditions are met. See
Synchronization for more details.

Timestamp bounds

When a calculator does not produce any output packets for a given timestamp, it
can instead output a “timestamp bound” indicating that no packet will be
produced for that timestamp. This indication is necessary to allow downstream
calculators to run at that timestamp, even though no packet has arrived for
certain streams for that timestamp. This is especially important for real-time
graphs in interactive applications, where it is crucial that each calculator
begin processing as soon as possible.

Consider a graph like the following:

node {
 calculator: "A"
 input_stream: "alpha_in"
 output_stream: "alpha"
}
node {
 calculator: "B"
 input_stream: "alpha"
 input_stream: "foo"
 output_stream: "beta"
}

Suppose: at timestamp T, node A doesn’t send a packet in its output stream
alpha. Node B gets a packet in foo at timestamp T and is waiting for a
packet in alpha at timestamp T. If A doesn’t send B a timestamp bound
update for alpha, B will keep waiting for a packet to arrive in alpha.
Meanwhile, the packet queue of foo will accumulate packets at T, T+1 and
so on.

To output a packet on a stream, a calculator uses the API functions
CalculatorContext::Outputs and OutputStream::Add. To instead output a
timestamp bound on a stream, a calculator can use the API functions
CalculatorContext::Outputs and CalculatorContext::SetNextTimestampBound. The
specified bound is the lowest allowable timestamp for the next packet on the
specified output stream. When no packet is output, a calculator will typically
do something like:

cc->Outputs().Tag("output_frame").SetNextTimestampBound(
 cc->InputTimestamp().NextAllowedInStream());

The function Timestamp::NextAllowedInStream returns the successive timestamp.
For example, Timestamp(1).NextAllowedInStream() == Timestamp(2).

Propagating timestamp bounds

Calculators that will be used in real-time graphs need to define output
timestamp bounds based on input timestamp bounds in order to allow downstream
calculators to be scheduled promptly. A common pattern is for calculators to
output packets with the same timestamps as their input packets. In this case,
simply outputting a packet on every call to Calculator::Process is sufficient
to define output timestamp bounds.

However, calculators are not required to follow this common pattern for output
timestamps, they are only required to choose monotonically increasing output
timestamps. As a result, certain calculators must calculate timestamp bounds
explicitly. MediaPipe provides several tools for computing appropriate timestamp
bound for each calculator.

1. SetNextTimestampBound() can be used to specify the timestamp bound, t + 1, for an output stream.

cc->Outputs.Tag("OUT").SetNextTimestampBound(t.NextAllowedInStream());

Alternatively, an empty packet with timestamp t can be produced to specify the
timestamp bound t + 1.

cc->Outputs.Tag("OUT").Add(Packet(), t);

The timestamp bound of an input stream is indicated by the packet or the empty
packet on the input stream.

Timestamp bound = cc->Inputs().Tag("IN").Value().Timestamp();

2. TimestampOffset() can be specified in order to automatically copy the
timestamp bound from input streams to output streams.

cc->SetTimestampOffset(0);

This setting has the advantage of propagating timestamp bounds automatically,
even when only timestamp bounds arrive and Calculator::Process is not invoked.

3. ProcessTimestampBounds() can be specified in order to invoke
Calculator::Process for each new “settled timestamp”, where the “settled
timestamp” is the new highest timestamp below the current timestamp bounds.
Without ProcessTimestampBounds(), Calculator::Process is invoked only with
one or more arriving packets.

cc->SetProcessTimestampBounds(true);

This setting allows a calculator to perform its own timestamp bounds calculation
and propagation, even when only input timestamps are updated. It can be used to
replicate the effect of TimestampOffset(), but it can also be used to
calculate a timestamp bound that takes into account additional factors.

For example, in order to replicate SetTimestampOffset(0), a calculator could
do the following:

absl::Status Open(CalculatorContext* cc) {
 cc->SetProcessTimestampBounds(true);
}

absl::Status Process(CalculatorContext* cc) {
 cc->Outputs.Tag("OUT").SetNextTimestampBound(
 cc->InputTimestamp().NextAllowedInStream());
}

Scheduling of Calculator::Open and Calculator::Close

Calculator::Open is invoked when all required input side-packets have been
produced. Input side-packets can be provided by the enclosing application or by
“side-packet calculators” inside the graph. Side-packets can be specified from
outside the graph using the API’s CalculatorGraph::Initialize and
CalculatorGraph::StartRun. Side packets can be specified by calculators within
the graph using CalculatorGraphConfig::OutputSidePackets and
OutputSidePacket::Set.

Calculator::Close is invoked when all of the input streams have become Done by
being closed or reaching timestamp bound Timestamp::Done.

Note: If the graph finishes all pending calculator execution and becomes
Done, before some streams become Done, then MediaPipe will invoke the
remaining calls to Calculator::Close, so that every calculator can produce its
final outputs.

The use of TimestampOffset has some implications for Calculator::Close. A
calculator specifying SetTimestampOffset(0) will by design signal that all of
its output streams have reached Timestamp::Done when all of its input streams
have reached Timestamp::Done, and therefore no further outputs are possible.
This prevents such a calculator from emitting any packets during
Calculator::Close. If a calculator needs to produce a summary packet during
Calculator::Close, Calculator::Process must specify timestamp bounds such
that at least one timestamp (such as Timestamp::Max) remains available during
Calculator::Close. This means that such a calculator normally cannot rely upon
SetTimestampOffset(0) and must instead specify timestamp bounds explicitly
using SetNextTimestampBounds().

layout: forward
target: https://developers.google.com/mediapipe/framework/framework_concepts/synchronization
title: Synchronization
parent: Framework Concepts
nav_order: 4

Synchronization

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Scheduling mechanics

Data processing in a MediaPipe graph occurs inside processing nodes defined as
CalculatorBase [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.h] subclasses. The scheduling system decides when each
calculator should run.

Each graph has at least one scheduler queue. Each scheduler queue has
exactly one executor. Nodes are statically assigned to a queue (and
therefore to an executor). By default there is one queue, whose executor is a
thread pool with a number of threads based on the system’s capabilities.

Each node has a scheduling state, which can be not ready, ready, or
running. A readiness function determines whether a node is ready to run. This
function is invoked at graph initialization, whenever a node finishes running,
and whenever the state of a node’s inputs changes.

The readiness function used depends on the type of node. A node with no stream
inputs is known as a source node; source nodes are always ready to run,
until they tell the framework they have no more data to output, at which point
they are closed.

Non-source nodes are ready if they have inputs to process, and if those inputs
form a valid input set according to the conditions set by the node’s input
policy (discussed below). Most nodes use the default input policy, but some
nodes specify a different one.

Note: Because changing the input policy changes the guarantees the calculator’s
code can expect from its inputs, it is not generally possible to mix and match
calculators with arbitrary input policies. Thus a calculator that uses a special
input policy should be written for it, and declare it in its contract.

When a node becomes ready, a task is added to the corresponding scheduler queue,
which is a priority queue. The priority function is currently fixed, and takes
into account static properties of the nodes and their topological sorting within
the graph. For example, nodes closer to the output side of the graph have higher
priority, while source nodes have the lowest priority.

Each queue is served by an executor, which is responsible for actually running
the task by invoking the calculator’s code. Different executors can be provided
and configured; this can be used to customize the use of execution resources,
e.g. by running certain nodes on lower-priority threads.

Timestamp Synchronization

MediaPipe graph execution is decentralized: there is no global clock, and
different nodes can process data from different timestamps at the same time.
This allows higher throughput via pipelining.

However, time information is very important for many perception workflows. Nodes
that receive multiple input streams generally need to coordinate them in some
way. For example, an object detector may output a list of boundary rectangles
from a frame, and this information may be fed into a rendering node, which
should process it together with the original frame.

Therefore, one of the key responsibilities of the MediaPipe framework is to
provide input synchronization for nodes. In terms of framework mechanics, the
primary role of a timestamp is to serve as a synchronization key.

Furthermore, MediaPipe is designed to support deterministic operations, which is
important in many scenarios (testing, simulation, batch processing, etc.), while
allowing graph authors to relax determinism where needed to meet real-time
constraints.

The two objectives of synchronization and determinism underlie several design
choices. Notably, the packets pushed into a given stream must have monotonically
increasing timestamps: this is not just a useful assumption for many nodes, but
it is also relied upon by the synchronization logic. Each stream has a
timestamp bound, which is the lowest possible timestamp allowed for a new
packet on the stream. When a packet with timestamp T arrives, the bound
automatically advances to T+1, reflecting the monotonic requirement. This
allows the framework to know for certain that no more packets with timestamp
lower than T will arrive.

Input policies

Synchronization is handled locally on each node, using the input policy
specified by the node.

The default input policy, defined by DefaultInputStreamHandler [https://github.com/google/mediapipe/tree/master/mediapipe/framework/stream_handler/default_input_stream_handler.h], provides
deterministic synchronization of inputs, with the following guarantees:

	If packets with the same timestamp are provided on multiple input streams,
they will always be processed together regardless of their arrival order in
real time.

	Input sets are processed in strictly ascending timestamp order.

	No packets are dropped, and the processing is fully deterministic.

	The node becomes ready to process data as soon as possible given the
guarantees above.

Note: An important consequence of this is that if the calculator always uses the
current input timestamp when outputting packets, the output will inherently obey
the monotonically increasing timestamp requirement.

Warning: On the other hand, it is not guaranteed that an input packet will
always be available for all streams.

To explain how it works, we need to introduce the definition of a settled
timestamp. We say that a timestamp in a stream is settled if it is lower than
the timestamp bound. In other words, a timestamp is settled for a stream once
the state of the input at that timestamp is irrevocably known: either there is a
packet, or there is the certainty that a packet with that timestamp will not
arrive.

Note: For this reason, MediaPipe also allows a stream producer to explicitly
advance the timestamp bound farther than what the last packet implies, i.e. to
provide a tighter bound. This can allow the downstream nodes to settle their
inputs sooner.

A timestamp is settled across multiple streams if it is settled on each of those
streams. Furthermore, if a timestamp is settled it implies that all previous
timestamps are also settled. Thus settled timestamps can be processed
deterministically in ascending order.

Given this definition, a calculator with the default input policy is ready if
there is a timestamp which is settled across all input streams and contains a
packet on at least one input stream. The input policy provides all available
packets for a settled timestamp as a single input set to the calculator.

One consequence of this deterministic behavior is that, for nodes with multiple
input streams, there can be a theoretically unbounded wait for a timestamp to be
settled, and an unbounded number of packets can be buffered in the meantime.
(Consider a node with two input streams, one of which keeps sending packets
while the other sends nothing and does not advance the bound.)

Therefore, we also provide for custom input policies: for example, splitting the
inputs in different synchronization sets defined by
SyncSetInputStreamHandler [https://github.com/google/mediapipe/tree/master/mediapipe/framework/stream_handler/sync_set_input_stream_handler.cc], or avoiding synchronization altogether and
processing inputs immediately as they arrive defined by
ImmediateInputStreamHandler [https://github.com/google/mediapipe/tree/master/mediapipe/framework/stream_handler/immediate_input_stream_handler.cc].

Flow control

There are two main flow control mechanisms. A backpressure mechanism throttles
the execution of upstream nodes when the packets buffered on a stream reach a
(configurable) limit defined by CalculatorGraphConfig::max_queue_size [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto]. This
mechanism maintains deterministic behavior, and includes a deadlock avoidance
system that relaxes configured limits when needed.

The second system consists of inserting special nodes which can drop packets
according to real-time constraints (typically using custom input policies)
defined by FlowLimiterCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/flow_limiter_calculator.cc]. For example, a common pattern places a
flow-control node at the input of a subgraph, with a loopback connection from
the final output to the flow-control node. The flow-control node is thus able to
keep track of how many timestamps are being processed in the downstream graph,
and drop packets if this count hits a (configurable) limit; and since packets
are dropped upstream, we avoid the wasted work that would result from partially
processing a timestamp and then dropping packets between intermediate stages.

This calculator-based approach gives the graph author control of where packets
can be dropped, and allows flexibility in adapting and customizing the graph’s
behavior depending on resource constraints.

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/android
title: MediaPipe on Android
parent: Getting Started
has_children: true
has_toc: false
nav_order: 1

MediaPipe on Android

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Please follow instructions below to build Android example apps in the supported
MediaPipe solutions. To learn more about these
example apps, start from Hello World! on Android.

To incorporate MediaPipe into Android Studio projects, see these
instructions to use the MediaPipe Android Solution
APIs (currently in alpha) that are now available in
Google’s Maven Repository [https://maven.google.com/web/index.html?#com.google.mediapipe].

Building Android example apps with Bazel

Prerequisite

	Install MediaPipe following these instructions.

	Setup Java Runtime.

	Setup Android SDK release 30.0.0 and above.

	Setup Android NDK version between 18 and 21.

MediaPipe recommends setting up Android SDK and NDK via Android Studio (and see
below for Android Studio setup). However, if you prefer using MediaPipe without
Android Studio, please run
setup_android_sdk_and_ndk.sh [https://github.com/google/mediapipe/blob/master/setup_android_sdk_and_ndk.sh]
to download and setup Android SDK and NDK before building any Android example
apps.

If Android SDK and NDK are already installed (e.g., by Android Studio), set
$ANDROID_HOME and $ANDROID_NDK_HOME to point to the installed SDK and NDK.

export ANDROID_HOME=<path to the Android SDK>
export ANDROID_NDK_HOME=<path to the Android NDK>

and add android_ndk_repository() and android_sdk_repository() rules into the
WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE] file as
the following:

$ echo "android_sdk_repository(name = \"androidsdk\")" >> WORKSPACE
$ echo "android_ndk_repository(name = \"androidndk\", api_level=21)" >> WORKSPACE

In order to use MediaPipe on earlier Android versions, MediaPipe needs to switch
to a lower Android API level. You can achieve this by specifying api_level = $YOUR_INTENDED_API_LEVEL in android_ndk_repository() and/or
android_sdk_repository() in the
WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE] file.

Tip: You can run this
script [https://github.com/google/mediapipe/blob/master/build_android_examples.sh]
to build (and install) all MediaPipe Android example apps.

	To build an Android example app, build against the corresponding
android_binary build target. For instance, for
MediaPipe Hands the target is handtrackinggpu in
the
BUILD [https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/handtrackinggpu/BUILD]
file:

Note: To reduce the binary size, consider appending --linkopt="-s" to the
command below to strip symbols.

bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/handtrackinggpu:handtrackinggpu

	Install it on a device with:

adb install bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/handtrackinggpu/handtrackinggpu.apk

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/android_archive_library
title: MediaPipe Android Archive
parent: MediaPipe on Android
grand_parent: Getting Started
nav_order: 3

MediaPipe Android Archive

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Experimental Only

The MediaPipe Android Archive (AAR) library is a convenient way to use MediaPipe
with Android Studio and Gradle. MediaPipe doesn’t publish a general AAR that can
be used by all projects. Instead, developers need to add a mediapipe_aar()
target to generate a custom AAR file for their own projects. This is necessary
in order to include specific resources such as MediaPipe calculators needed for
each project.

Steps to build a MediaPipe AAR

	Create a mediapipe_aar() target.

In the MediaPipe directory, create a new mediapipe_aar() target in a BUILD
file. You need to figure out what calculators are used in the graph and
provide the calculator dependencies to the mediapipe_aar(). For example, to
build an AAR for MediaPipe Face Detection,
you can put the following code into
mediapipe/examples/android/src/java/com/google/mediapipe/apps/aar_example/BUILD.

load("//mediapipe/java/com/google/mediapipe:mediapipe_aar.bzl", "mediapipe_aar")

mediapipe_aar(
 name = "mediapipe_face_detection",
 calculators = ["//mediapipe/graphs/face_detection:mobile_calculators"],
)

	Run the Bazel build command to generate the AAR.

bazel build -c opt --strip=ALWAYS \
 --host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
 --fat_apk_cpu=arm64-v8a,armeabi-v7a \
 --legacy_whole_archive=0 \
 --features=-legacy_whole_archive \
 --copt=-fvisibility=hidden \
 --copt=-ffunction-sections \
 --copt=-fdata-sections \
 --copt=-fstack-protector \
 --copt=-Oz \
 --copt=-fomit-frame-pointer \
 --copt=-DABSL_MIN_LOG_LEVEL=2 \
 --linkopt=-Wl,--gc-sections,--strip-all \
 //path/to/the/aar/build/file:aar_name.aar

For the face detection AAR target we made in step 1, run:

bazel build -c opt --strip=ALWAYS \
 --host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
 --fat_apk_cpu=arm64-v8a,armeabi-v7a \
 --legacy_whole_archive=0 \
 --features=-legacy_whole_archive \
 --copt=-fvisibility=hidden \
 --copt=-ffunction-sections \
 --copt=-fdata-sections \
 --copt=-fstack-protector \
 --copt=-Oz \
 --copt=-fomit-frame-pointer \
 --copt=-DABSL_MIN_LOG_LEVEL=2 \
 --linkopt=-Wl,--gc-sections,--strip-all \
 //mediapipe/examples/android/src/java/com/google/mediapipe/apps/aar_example:mediapipe_face_detection.aar

It should print:
Target //mediapipe/examples/android/src/java/com/google/mediapipe/apps/aar_example:mediapipe_face_detection.aar up-to-date:
bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/aar_example/mediapipe_face_detection.aar

	(Optional) Save the AAR to your preferred location.

cp bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/aar_example/mediapipe_face_detection.aar
/absolute/path/to/your/preferred/location

Steps to use a MediaPipe AAR in Android Studio with Gradle

	Start Android Studio and go to your project.

	Copy the AAR into app/libs.

cp bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/aar_example/mediapipe_face_detection.aar
/path/to/your/app/libs/

[image: ../_images/aar_location.png]Screenshot

	Make app/src/main/assets and copy assets (graph, model, and etc) into
app/src/main/assets.

Build the MediaPipe binary graph and copy the assets into
app/src/main/assets, e.g., for the face detection graph, you need to build
and copy
the binary graph [https://github.com/google/mediapipe/blob/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu/BUILD#L41]
and
the face detection tflite model [https://github.com/google/mediapipe/tree/master/mediapipe/modules/face_detection/face_detection_short_range.tflite].

bazel build -c opt mediapipe/graphs/face_detection:face_detection_mobile_gpu_binary_graph
cp bazel-bin/mediapipe/graphs/face_detection/face_detection_mobile_gpu.binarypb /path/to/your/app/src/main/assets/
cp mediapipe/modules/face_detection/face_detection_short_range.tflite /path/to/your/app/src/main/assets/

[image: ../_images/assets_location.png]Screenshot

	Modify app/build.gradle to add MediaPipe dependencies and MediaPipe AAR.

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar', '*.aar'])
 implementation 'androidx.appcompat:appcompat:1.0.2'
 implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'androidx.test.ext:junit:1.1.0'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.1.1'
 // MediaPipe deps
 implementation 'com.google.flogger:flogger:latest.release'
 implementation 'com.google.flogger:flogger-system-backend:latest.release'
 implementation 'com.google.code.findbugs:jsr305:latest.release'
 implementation 'com.google.guava:guava:27.0.1-android'
 implementation 'com.google.protobuf:protobuf-javalite:3.19.1'
 // CameraX core library
 def camerax_version = "1.0.0-beta10"
 implementation "androidx.camera:camera-core:$camerax_version"
 implementation "androidx.camera:camera-camera2:$camerax_version"
 implementation "androidx.camera:camera-lifecycle:$camerax_version"
 // AutoValue
 def auto_value_version = "1.8.1"
 implementation "com.google.auto.value:auto-value-annotations:$auto_value_version"
 annotationProcessor "com.google.auto.value:auto-value:$auto_value_version"
}

	Follow our Android app examples to use MediaPipe in Android Studio for your
use case. If you are looking for an example, a face detection example can be
found
here [https://github.com/jiuqiant/mediapipe_face_detection_aar_example] and
a multi-hand tracking example can be found
here [https://github.com/jiuqiant/mediapipe_multi_hands_tracking_aar_example].

layout: forward
target: https://developers.google.com/mediapipe/
title: MediaPipe Android Solutions
parent: MediaPipe on Android
grand_parent: Getting Started
nav_order: 2

MediaPipe Android Solutions

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

MediaPipe Android Solution APIs (currently in alpha) are available in:

	MediaPipe Face Detection

	MediaPipe Face Mesh

	MediaPipe Hands

Incorporation in Android Studio

Prebuilt packages of Android Solution APIs can be found in
Google’s Maven Repository [https://maven.google.com/web/index.html?#com.google.mediapipe].
To incorporate them into an Android Studio project, add the following into the
project’s Gradle dependencies:

dependencies {
 // MediaPipe solution-core is the foundation of any MediaPipe Solutions.
 implementation 'com.google.mediapipe:solution-core:latest.release'
 // Optional: MediaPipe Face Detection Solution.
 implementation 'com.google.mediapipe:facedetection:latest.release'
 // Optional: MediaPipe Face Mesh Solution.
 implementation 'com.google.mediapipe:facemesh:latest.release'
 // Optional: MediaPipe Hands Solution.
 implementation 'com.google.mediapipe:hands:latest.release'
}

If you need further customization, instead of using the prebuilt maven packages
consider building a MediaPipe Android Archive library locally from source by
following these instructions.

Building solution example apps

Detailed usage examples of the Android Solution APIs can be found in the
source code [https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/solutions]
of the solution example apps.

To build these apps:

	Open Android Studio Arctic Fox on Linux, macOS, or Windows.

	Import mediapipe/examples/android/solutions directory into Android Studio.

[image: ../_images/8c7da11b20834ca3bc9fa0e72af4ac5e7a8b18df.png]Screenshot

	For Windows users, run create_win_symlinks.bat as administrator to create
res directory symlinks.

[image: ../_images/run_create_win_symlinks.png]Screenshot

	Select “File” -> “Sync Project with Gradle Files” to sync project.

	Run solution example app in Android Studio.

[image: ../_images/run_android_solution_app.png]Screenshot

	(Optional) Run solutions on CPU.

MediaPipe solution example apps run the pipeline and model inference on GPU
by default. If needed, for example to run the apps on Android Emulator, set
the RUN_ON_GPU boolean variable to false in the app’s
MainActivity.java to run the pipeline and model inference on CPU.

MediaPipe Solution APIs Terms of Service

Last modified: November 12, 2021

Use of MediaPipe Solution APIs is subject to the
Google APIs Terms of Service [https://developers.google.com/terms],
Google API Services User Data Policy [https://developers.google.com/terms/api-services-user-data-policy],
and the terms below. Please check back from time to time as these terms and
policies are occasionally updated.

Privacy

When you use MediaPipe Solution APIs, processing of the input data (e.g. images,
video, text) fully happens on-device, and MediaPipe does not send that input
data to Google servers. As a result, you can use our APIs for processing data
that should not leave the device.

MediaPipe Android Solution APIs will contact Google servers from time to time in
order to receive things like bug fixes, updated models, and hardware accelerator
compatibility information. MediaPipe Android Solution APIs also send metrics
about the performance and utilization of the APIs in your app to Google. Google
uses this metrics data to measure performance, API usage, debug, maintain and
improve the APIs, and detect misuse or abuse, as further described in our
Privacy Policy [https://policies.google.com/privacy].

You are responsible for obtaining informed consent from your app users about
Google’s processing of MediaPipe metrics data as required by applicable law.

Data we collect may include the following, across all MediaPipe Android Solution
APIs:

	Device information (such as manufacturer, model, OS version and build) and
available ML hardware accelerators (GPU and DSP). Used for diagnostics and
usage analytics.

	App identification information (package name / bundle id, app version). Used
for diagnostics and usage analytics.

	API configuration (such as image format, resolution, and MediaPipe version
used). Used for diagnostics and usage analytics.

	Event type (such as initialize, download model, update, run, and detection).
Used for diagnostics and usage analytics.

	Error codes. Used for diagnostics.

	Performance metrics. Used for diagnostics.

	Per-installation identifiers that do not uniquely identify a user or
physical device. Used for operation of remote configuration and usage
analytics.

	Network request sender IP addresses. Used for remote configuration
diagnostics. Collected IP addresses are retained temporarily.

layout: forward
target: https://developers.google.com/mediapipe/
title: Building MediaPipe Examples
parent: Getting Started
nav_exclude: true

Building MediaPipe Examples

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Android

Please see these instructions.

iOS

Please see these instructions.

Python

Please see these instructions.

JavaScript

Please see these instructions.

C++

Please see these instructions.

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/cpp
title: MediaPipe in C++
parent: Getting Started
has_children: true
has_toc: false
nav_order: 5

MediaPipe in C++

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Please follow instructions below to build C++ command-line example apps in the
supported MediaPipe solutions. To learn more about
these example apps, start from Hello World! in C++.

Building C++ command-line example apps

Option 1: Running on CPU

	To build, for example, MediaPipe Hands, run:

bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/hand_tracking:hand_tracking_cpu

	To run the application:

GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/hand_tracking/hand_tracking_cpu \
 --calculator_graph_config_file=mediapipe/graphs/hand_tracking/hand_tracking_desktop_live.pbtxt

This will open up your webcam as long as it is connected and on. Any errors
is likely due to your webcam being not accessible.

Option 2: Running on GPU

Note: This currently works only on Linux, and please first follow
OpenGL ES Setup on Linux Desktop.

	To build, for example, MediaPipe Hands, run:

bazel build -c opt --copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11 \
 mediapipe/examples/desktop/hand_tracking:hand_tracking_gpu

	To run the application:

GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/hand_tracking/hand_tracking_gpu \
 --calculator_graph_config_file=mediapipe/graphs/hand_tracking/hand_tracking_desktop_live_gpu.pbtxt

This will open up your webcam as long as it is connected and on. Any errors
is likely due to your webcam being not accessible, or GPU drivers not setup
properly.

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/faq
title: FAQ
parent: Getting Started
nav_order: 9

FAQ

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

How to convert ImageFrames and GpuBuffers

The Calculators ImageFrameToGpuBufferCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/gpu/image_frame_to_gpu_buffer_calculator.cc] and
GpuBufferToImageFrameCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/gpu/gpu_buffer_to_image_frame_calculator.cc] convert back and forth between packets of
type ImageFrame [https://github.com/google/mediapipe/tree/master/mediapipe/framework/formats/image_frame.h] and GpuBuffer [https://github.com/google/mediapipe/tree/master/mediapipe/gpu/gpu_buffer.h]. ImageFrame [https://github.com/google/mediapipe/tree/master/mediapipe/framework/formats/image_frame.h] refers to image data in
CPU memory in any of a number of bitmap image formats. GpuBuffer [https://github.com/google/mediapipe/tree/master/mediapipe/gpu/gpu_buffer.h] refers to
image data in GPU memory. You can find more detail in the Framework Concepts
section
GpuBuffer to ImageFrame Converters.
You can see an example in:

	object_detection_mobile_cpu.pbtxt [https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_mobile_cpu.pbtxt]

How to visualize perception results

The AnnotationOverlayCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/util/annotation_overlay_calculator.cc] allows perception results, such as bounding
boxes, arrows, and ovals, to be superimposed on the video frames aligned with
the recognized objects. The results can be displayed in a diagnostic window when
running on a workstation, or in a texture frame when running on device. You can
see an example use of AnnotationOverlayCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/util/annotation_overlay_calculator.cc] in:

	face_detection_mobile_gpu.pbtxt [https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt].

How to run calculators in parallel

Within a calculator graph, MediaPipe routinely runs separate calculator nodes
in parallel. MediaPipe maintains a pool of threads, and runs each calculator
as soon as a thread is available and all of it’s inputs are ready. Each
calculator instance is only run for one set of inputs at a time, so most
calculators need only to be thread-compatible and not thread-safe.

In order to enable one calculator to process multiple inputs in parallel, there
are two possible approaches:

	Define multiple calculator nodes and dispatch input packets to all nodes.

	Make the calculator thread-safe and configure its max_in_flight [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto] setting.

The first approach can be followed using the calculators designed to distribute
packets across other calculators, such as RoundRobinDemuxCalculator [https://github.com/google/mediapipe/tree/master//mediapipe/calculators/core/round_robin_demux_calculator.cc]. A
single RoundRobinDemuxCalculator [https://github.com/google/mediapipe/tree/master//mediapipe/calculators/core/round_robin_demux_calculator.cc] can distribute successive packets across
several identically configured ScaleImageCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/image/scale_image_calculator.cc] nodes.

The second approach allows up to max_in_flight [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto] invocations of the
CalculatorBase::Process [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.h] method on the same calculator node. The output
packets from CalculatorBase::Process [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.h] are automatically ordered by timestamp
before they are passed along to downstream calculators.

With either approach, you must be aware that the calculator running in parallel
cannot maintain internal state in the same way as a normal sequential
calculator.

Output timestamps when using ImmediateInputStreamHandler

The ImmediateInputStreamHandler [https://github.com/google/mediapipe/tree/master/mediapipe/framework/stream_handler/immediate_input_stream_handler.cc] delivers each packet as soon as it arrives
at an input stream. As a result, it can deliver a packet
with a higher timestamp from one input stream before delivering a packet with a
lower timestamp from a different input stream. If these input timestamps are
both used for packets sent to one output stream, that output stream will
complain that the timestamps are not monotonically increasing. In order to
remedy this, the calculator must take care to output a packet only after
processing is complete for its timestamp. This could be accomplished by waiting
until input packets have been received from all inputstreams for that timestamp,
or by ignoring a packet that arrives with a timestamp that has already been
processed.

How to change settings at runtime

There are two main approaches to changing the settings of a calculator graph
while the application is running:

	Restart the calculator graph with modified CalculatorGraphConfig [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto].

	Send new calculator options through packets on graph input-streams.

The first approach has the advantage of leveraging CalculatorGraphConfig [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto]
processing tools such as “subgraphs”. The second approach has the advantage of
allowing active calculators and packets to remain in-flight while settings
change. MediaPipe contributors are currently investigating alternative approaches
to achieve both of these advantages.

How to process realtime input streams

The MediaPipe framework can be used to process data streams either online or
offline. For offline processing, packets are pushed into the graph as soon as
calculators are ready to process those packets. For online processing, one
packet for each frame is pushed into the graph as that frame is recorded.

The MediaPipe framework requires only that successive packets be assigned
monotonically increasing timestamps. By convention, realtime calculators and
graphs use the recording time or the presentation time as the timestamp for each
packet, with each timestamp representing microseconds since
Jan/1/1970:00:00:00. This allows packets from various sources to be processed
in a globally consistent order.

Normally for offline processing, every input packet is processed and processing
continues as long as necessary. For online processing, it is often necessary to
drop input packets in order to keep pace with the arrival of input data frames.
When inputs arrive too frequently, the recommended technique for dropping
packets is to use the MediaPipe calculators designed specifically for this
purpose such as FlowLimiterCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/flow_limiter_calculator.cc] and PacketClonerCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/packet_cloner_calculator.cc].

For online processing, it is also necessary to promptly determine when processing
can proceed. MediaPipe supports this by propagating timestamp bounds between
calculators. Timestamp bounds indicate timestamp intervals that will contain no
input packets, and they allow calculators to begin processing for those
timestamps immediately. Calculators designed for realtime processing should
carefully calculate timestamp bounds in order to begin processing as promptly as
possible. For example, the MakePairCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/make_pair_calculator.cc] uses the SetOffset API to
propagate timestamp bounds from input streams to output streams.

Can I run MediaPipe on MS Windows?

Currently MediaPipe portability supports Debian Linux, Ubuntu Linux,
MacOS, Android, and iOS. The core of MediaPipe framework is a C++ library
conforming to the C++11 standard, so it is relatively easy to port to
additional platforms.

layout: forward
target: https://developers.google.com/mediapipe/
title: Getting Started
nav_order: 2
has_children: true

Getting Started

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/gpu_support
title: GPU Support
parent: Getting Started
nav_order: 7

GPU Support

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

OpenGL ES Support

MediaPipe supports OpenGL ES up to version 3.2 on Android/Linux and up to ES 3.0
on iOS. In addition, MediaPipe also supports Metal on iOS.

OpenGL ES 3.1 or greater is required (on Android/Linux systems) for running
machine learning inference calculators and graphs.

Disable OpenGL ES Support

By default, building MediaPipe (with no special bazel flags) attempts to compile
and link against OpenGL ES (and for iOS also Metal) libraries.

On platforms where OpenGL ES is not available (see also
OpenGL ES Setup on Linux Desktop), you
should disable OpenGL ES support with:

$ bazel build --define MEDIAPIPE_DISABLE_GPU=1 <my-target>

Note: On Android and iOS, OpenGL ES is required by MediaPipe framework and the
support should never be disabled.

OpenGL ES Setup on Linux Desktop

On Linux desktop with video cards that support OpenGL ES 3.1+, MediaPipe can run
GPU compute and rendering and perform TFLite inference on GPU.

To check if your Linux desktop GPU can run MediaPipe with OpenGL ES:

$ sudo apt-get install mesa-common-dev libegl1-mesa-dev libgles2-mesa-dev
$ sudo apt-get install mesa-utils
$ glxinfo | grep -i opengl

For example, it may print:

$ glxinfo | grep -i opengl
...
OpenGL ES profile version string: OpenGL ES 3.2 NVIDIA 430.50
OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.20
OpenGL ES profile extensions:

If you have connected to your computer through SSH and find when you probe for
GPU information you see the output:

glxinfo | grep -i opengl
Error: unable to open display

Try re-establishing your SSH connection with the -X option and try again. For
example:

ssh -X <user>@<host>

Notice the ES 3.20 text above.

You need to see ES 3.1 or greater printed in order to perform TFLite inference
on GPU in MediaPipe. With this setup, build with:

$ bazel build --copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11 <my-target>

If only ES 3.0 or below is supported, you can still build MediaPipe targets that
don’t require TFLite inference on GPU with:

$ bazel build --copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11 --copt -DMEDIAPIPE_DISABLE_GL_COMPUTE <my-target>

Note: MEDIAPIPE_DISABLE_GL_COMPUTE is already defined automatically on all Apple
systems (Apple doesn’t support OpenGL ES 3.1+).

TensorFlow CUDA Support and Setup on Linux Desktop

MediaPipe framework doesn’t require CUDA for GPU compute and rendering. However,
MediaPipe can work with TensorFlow to perform GPU inference on video cards that
support CUDA.

To enable TensorFlow GPU inference with MediaPipe, the first step is to follow
the
TensorFlow GPU documentation [https://www.tensorflow.org/install/gpu#software_requirements]
to install the required NVIDIA software on your Linux desktop.

After installation, update $PATH and $LD_LIBRARY_PATH and run ldconfig
with:

$ export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}
$ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64,/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
$ sudo ldconfig

It’s recommended to verify the installation of CUPTI, CUDA, CuDNN, and NVCC:

$ ls /usr/local/cuda/extras/CUPTI
/lib64
libcupti.so libcupti.so.10.1.208 libnvperf_host.so libnvperf_target.so
libcupti.so.10.1 libcupti_static.a libnvperf_host_static.a

$ ls /usr/local/cuda-10.1
LICENSE bin extras lib64 libnvvp nvml samples src tools
README doc include libnsight nsightee_plugins nvvm share targets version.txt

$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243

$ ls /usr/lib/x86_64-linux-gnu/ | grep libcudnn.so
libcudnn.so
libcudnn.so.7
libcudnn.so.7.6.4

Setting $TF_CUDA_PATHS is the way to declare where the CUDA library is. Note
that the following code snippet also adds /usr/lib/x86_64-linux-gnu and
/usr/include into $TF_CUDA_PATHS for cudablas and libcudnn.

$ export TF_CUDA_PATHS=/usr/local/cuda-10.1,/usr/lib/x86_64-linux-gnu,/usr/include

To make MediaPipe get TensorFlow’s CUDA settings, find TensorFlow’s
.bazelrc [https://github.com/tensorflow/tensorflow/blob/master/.bazelrc] and
copy the build:using_cuda and build:cuda section into MediaPipe’s .bazelrc
file. For example, as of April 23, 2020, TensorFlow’s CUDA setting is the
following:

This config refers to building with CUDA available. It does not necessarily
mean that we build CUDA op kernels.
build:using_cuda --define=using_cuda=true
build:using_cuda --action_env TF_NEED_CUDA=1
build:using_cuda --crosstool_top=@local_config_cuda//crosstool:toolchain

This config refers to building CUDA op kernels with nvcc.
build:cuda --config=using_cuda
build:cuda --define=using_cuda_nvcc=true

Finally, build MediaPipe with TensorFlow GPU with two more flags --config=cuda
and --spawn_strategy=local. For example:

$ bazel build -c opt --config=cuda --spawn_strategy=local \
 --define no_aws_support=true --copt -DMESA_EGL_NO_X11_HEADERS \
 mediapipe/examples/desktop/object_detection:object_detection_tensorflow

While the binary is running, it prints out the GPU device info:

I external/org_tensorflow/tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1544] Found device 0 with properties: pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5 coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1686] Adding visible gpu devices: 0

You can monitor the GPU usage to verify whether the GPU is used for model
inference.

$ nvidia-smi --query-gpu=utilization.gpu --format=csv --loop=1

0 %
0 %
4 %
5 %
83 %
21 %
22 %
27 %
29 %
100 %
0 %
0%

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/hello_world_android
title: Hello World! on Android
parent: MediaPipe on Android
grand_parent: Getting Started
nav_order: 1

Hello World! on Android

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Introduction

This codelab uses MediaPipe on an Android device.

What you will learn

How to develop an Android application that uses MediaPipe and run a MediaPipe
graph on Android.

What you will build

A simple camera app for real-time Sobel edge detection applied to a live video
stream on an Android device.

[image: ../_images/edge_detection_android_gpu.gif]edge_detection_android_gpu_gif

Setup

	Install MediaPipe on your system, see
MediaPipe installation guide for details.

	Install Android Development SDK and Android NDK. See how to do so also in
[MediaPipe installation guide].

	Enable developer options [https://developer.android.com/studio/debug/dev-options] on your Android device.

	Setup Bazel [https://bazel.build/] on your system to build and deploy the Android app.

Graph for edge detection

We will be using the following graph, edge_detection_mobile_gpu.pbtxt [https://github.com/google/mediapipe/tree/master/mediapipe/graphs/edge_detection/edge_detection_mobile_gpu.pbtxt]:

MediaPipe graph that performs GPU Sobel edge detection on a live video stream.
Used in the examples in
mediapipe/examples/android/src/java/com/mediapipe/apps/basic and
mediapipe/examples/ios/edgedetectiongpu.

Images coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"

Converts RGB images into luminance images, still stored in RGB format.
node: {
 calculator: "LuminanceCalculator"
 input_stream: "input_video"
 output_stream: "luma_video"
}

Applies the Sobel filter to luminance images stored in RGB format.
node: {
 calculator: "SobelEdgesCalculator"
 input_stream: "luma_video"
 output_stream: "output_video"
}

A visualization of the graph is shown below:

[image: ../_images/edge_detection_mobile_gpu.png]edge_detection_mobile_gpu

This graph has a single input stream named input_video for all incoming frames
that will be provided by your device’s camera.

The first node in the graph, LuminanceCalculator, takes a single packet (image
frame) and applies a change in luminance using an OpenGL shader. The resulting
image frame is sent to the luma_video output stream.

The second node, SobelEdgesCalculator applies edge detection to incoming
packets in the luma_video stream and outputs results in output_video output
stream.

Our Android application will display the output image frames of the
output_video stream.

Initial minimal application setup

We first start with an simple Android application that displays “Hello World!”
on the screen. You may skip this step if you are familiar with building Android
applications using bazel.

Create a new directory where you will create your Android application. For
example, the complete code of this tutorial can be found at
mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic. We
will refer to this path as $APPLICATION_PATH throughout the codelab.

Note that in the path to the application:

	The application is named helloworld.

	The $PACKAGE_PATH of the application is
com.google.mediapipe.apps.basic. This is used in code snippets in this
tutorial, so please remember to use your own $PACKAGE_PATH when you
copy/use the code snippets.

Add a file activity_main.xml to $APPLICATION_PATH/res/layout. This displays
a TextView [https://developer.android.com/reference/android/widget/TextView] on the full screen of the application with the string Hello World!:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Add a simple MainActivity.java to $APPLICATION_PATH which loads the content
of the activity_main.xml layout as shown below:

package com.google.mediapipe.apps.basic;

import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;

/** Bare-bones main activity. */
public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

Add a manifest file, AndroidManifest.xml to $APPLICATION_PATH, which
launches MainActivity on application start:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.google.mediapipe.apps.basic">

 <uses-sdk
 android:minSdkVersion="19"
 android:targetSdkVersion="19" />

 <application
 android:allowBackup="true"
 android:label="${appName}"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity
 android:name="${mainActivity}"
 android:exported="true"
 android:screenOrientation="portrait">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

In our application we are using a Theme.AppCompat theme in the app, so we need
appropriate theme references. Add colors.xml to
$APPLICATION_PATH/res/values/:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#008577</color>
 <color name="colorPrimaryDark">#00574B</color>
 <color name="colorAccent">#D81B60</color>
</resources>

Add styles.xml to $APPLICATION_PATH/res/values/:

<resources>

 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>

</resources>

To build the application, add a BUILD file to $APPLICATION_PATH, and
${appName} and ${mainActivity} in the manifest will be replaced by strings
specified in BUILD as shown below.

android_library(
 name = "basic_lib",
 srcs = glob(["*.java"]),
 manifest = "AndroidManifest.xml",
 resource_files = glob(["res/**"]),
 deps = [
 "//third_party:android_constraint_layout",
 "//third_party:androidx_appcompat",
],
)

android_binary(
 name = "helloworld",
 manifest = "AndroidManifest.xml",
 manifest_values = {
 "applicationId": "com.google.mediapipe.apps.basic",
 "appName": "Hello World",
 "mainActivity": ".MainActivity",
 },
 multidex = "native",
 deps = [
 ":basic_lib",
],
)

The android_library rule adds dependencies for MainActivity, resource files
and AndroidManifest.xml.

The android_binary rule, uses the basic_lib Android library generated to
build a binary APK for installation on your Android device.

To build the app, use the following command:

bazel build -c opt --config=android_arm64 $APPLICATION_PATH:helloworld

Install the generated APK file using adb install. For example:

adb install bazel-bin/$APPLICATION_PATH/helloworld.apk

Open the application on your device. It should display a screen with the text
Hello World!.

[image: ../_images/bazel_hello_world_android.png]bazel_hello_world_android

Using the camera via CameraX

Camera Permissions

To use the camera in our application, we need to request the user to provide
access to the camera. To request camera permissions, add the following to
AndroidManifest.xml:

<!-- For using the camera -->
<uses-permission android:name="android.permission.CAMERA" />
<uses-feature android:name="android.hardware.camera" />

Change the minimum SDK version to 21 and target SDK version to 27 in the
same file:

<uses-sdk
 android:minSdkVersion="21"
 android:targetSdkVersion="27" />

This ensures that the user is prompted to request camera permission and enables
us to use the CameraX [https://developer.android.com/training/camerax] library for camera access.

To request camera permissions, we can use a utility provided by MediaPipe
components, namely PermissionHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/PermissionHelper.java]. To use it, add a dependency
"//mediapipe/java/com/google/mediapipe/components:android_components" in the
mediapipe_lib rule in BUILD.

To use the PermissionHelper in MainActivity, add the following line to the
onCreate function:

PermissionHelper.checkAndRequestCameraPermissions(this);

This prompts the user with a dialog on the screen to request for permissions to
use the camera in this application.

Add the following code to handle the user response:

@Override
public void onRequestPermissionsResult(
 int requestCode, String[] permissions, int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 PermissionHelper.onRequestPermissionsResult(requestCode, permissions, grantResults);
}

@Override
protected void onResume() {
 super.onResume();
 if (PermissionHelper.cameraPermissionsGranted(this)) {
 startCamera();
 }
}

public void startCamera() {}

We will leave the startCamera() method empty for now. When the user responds
to the prompt, the MainActivity will resume and onResume() will be called.
The code will confirm that permissions for using the camera have been granted,
and then will start the camera.

Rebuild and install the application. You should now see a prompt requesting
access to the camera for the application.

Note: If the there is no dialog prompt, uninstall and reinstall the application.
This may also happen if you haven’t changed the minSdkVersion and
targetSdkVersion in the AndroidManifest.xml file.

Camera Access

With camera permissions available, we can start and fetch frames from the
camera.

To view the frames from the camera we will use a SurfaceView [https://developer.android.com/reference/android/view/SurfaceView]. Each frame
from the camera will be stored in a SurfaceTexture [https://developer.android.com/reference/android/graphics/SurfaceTexture] object. To use these, we
first need to change the layout of our application.

Remove the entire TextView [https://developer.android.com/reference/android/widget/TextView] code block from
$APPLICATION_PATH/res/layout/activity_main.xml and add the following code
instead:

<FrameLayout
 android:id="@+id/preview_display_layout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">
 <TextView
 android:id="@+id/no_camera_access_view"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 android:gravity="center"
 android:text="@string/no_camera_access" />
</FrameLayout>

This code block has a new FrameLayout [https://developer.android.com/reference/android/widget/FrameLayout] named preview_display_layout and a
TextView [https://developer.android.com/reference/android/widget/TextView] nested inside it, named no_camera_access_preview. When camera
access permissions are not granted, our application will display the
TextView [https://developer.android.com/reference/android/widget/TextView] with a string message, stored in the variable no_camera_access.
Add the following line in the $APPLICATION_PATH/res/values/strings.xml file:

<string name="no_camera_access" translatable="false">Please grant camera permissions.</string>

When the user doesn’t grant camera permission, the screen will now look like
this:

[image: ../_images/944f1279f74559d8f6808bea4ede897c98bb3406.png]missing_camera_permission_android

Now, we will add the SurfaceTexture [https://developer.android.com/reference/android/graphics/SurfaceTexture] and SurfaceView [https://developer.android.com/reference/android/view/SurfaceView] objects to
MainActivity:

private SurfaceTexture previewFrameTexture;
private SurfaceView previewDisplayView;

In the onCreate(Bundle) function, add the following two lines before
requesting camera permissions:

previewDisplayView = new SurfaceView(this);
setupPreviewDisplayView();

And now add the code defining setupPreviewDisplayView():

private void setupPreviewDisplayView() {
 previewDisplayView.setVisibility(View.GONE);
 ViewGroup viewGroup = findViewById(R.id.preview_display_layout);
 viewGroup.addView(previewDisplayView);
}

We define a new SurfaceView [https://developer.android.com/reference/android/view/SurfaceView] object and add it to the
preview_display_layout FrameLayout [https://developer.android.com/reference/android/widget/FrameLayout] object so that we can use it to display
the camera frames using a SurfaceTexture [https://developer.android.com/reference/android/graphics/SurfaceTexture] object named previewFrameTexture.

To use previewFrameTexture for getting camera frames, we will use CameraX [https://developer.android.com/training/camerax].
MediaPipe provides a utility named CameraXPreviewHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/CameraXPreviewHelper.java] to use CameraX [https://developer.android.com/training/camerax].
This class updates a listener when camera is started via
onCameraStarted(@Nullable SurfaceTexture).

To use this utility, modify the BUILD file to add a dependency on
"//mediapipe/java/com/google/mediapipe/components:android_camerax_helper".

Now import CameraXPreviewHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/CameraXPreviewHelper.java] and add the following line to
MainActivity:

private CameraXPreviewHelper cameraHelper;

Now, we can add our implementation to startCamera():

public void startCamera() {
 cameraHelper = new CameraXPreviewHelper();
 cameraHelper.setOnCameraStartedListener(
 surfaceTexture -> {
 previewFrameTexture = surfaceTexture;
 // Make the display view visible to start showing the preview.
 previewDisplayView.setVisibility(View.VISIBLE);
 });
}

This creates a new CameraXPreviewHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/CameraXPreviewHelper.java] object and adds an anonymous
listener on the object. When cameraHelper signals that the camera has started
and a surfaceTexture to grab frames is available, we save that
surfaceTexture as previewFrameTexture, and make the previewDisplayView
visible so that we can start seeing frames from the previewFrameTexture.

However, before starting the camera, we need to decide which camera we want to
use. CameraXPreviewHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/CameraXPreviewHelper.java] inherits from CameraHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/CameraHelper.java] which provides two
options, FRONT and BACK. We can pass in the decision from the BUILD file
as metadata such that no code change is required to build another version of the
app using a different camera.

Assuming we want to use BACK camera to perform edge detection on a live scene
that we view from the camera, add the metadata into AndroidManifest.xml:

 ...
 <meta-data android:name="cameraFacingFront" android:value="${cameraFacingFront}"/>
 </application>
</manifest>

and specify the selection in BUILD in the helloworld android binary rule
with a new entry in manifest_values:

manifest_values = {
 "applicationId": "com.google.mediapipe.apps.basic",
 "appName": "Hello World",
 "mainActivity": ".MainActivity",
 "cameraFacingFront": "False",
},

Now, in MainActivity to retrieve the metadata specified in manifest_values,
add an ApplicationInfo [https://developer.android.com/reference/android/content/pm/ApplicationInfo] object:

private ApplicationInfo applicationInfo;

In the onCreate() function, add:

try {
 applicationInfo =
 getPackageManager().getApplicationInfo(getPackageName(), PackageManager.GET_META_DATA);
} catch (NameNotFoundException e) {
 Log.e(TAG, "Cannot find application info: " + e);
}

Now add the following line at the end of the startCamera() function:

CameraHelper.CameraFacing cameraFacing =
 applicationInfo.metaData.getBoolean("cameraFacingFront", false)
 ? CameraHelper.CameraFacing.FRONT
 : CameraHelper.CameraFacing.BACK;
cameraHelper.startCamera(this, cameraFacing, /*unusedSurfaceTexture=*/ null);

At this point, the application should build successfully. However, when you run
the application on your device, you will see a black screen (even though camera
permissions have been granted). This is because even though we save the
surfaceTexture variable provided by the CameraXPreviewHelper [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/CameraXPreviewHelper.java], the
previewSurfaceView doesn’t use its output and display it on screen yet.

Since we want to use the frames in a MediaPipe graph, we will not add code to
view the camera output directly in this tutorial. Instead, we skip ahead to how
we can send camera frames for processing to a MediaPipe graph and display the
output of the graph on the screen.

ExternalTextureConverter setup

A SurfaceTexture [https://developer.android.com/reference/android/graphics/SurfaceTexture] captures image frames from a stream as an OpenGL ES
texture. To use a MediaPipe graph, frames captured from the camera should be
stored in a regular Open GL texture object. MediaPipe provides a class,
ExternalTextureConverter [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/ExternalTextureConverter.java] to convert the image stored in a SurfaceTexture [https://developer.android.com/reference/android/graphics/SurfaceTexture]
object to a regular OpenGL texture object.

To use ExternalTextureConverter [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/ExternalTextureConverter.java], we also need an EGLContext, which is
created and managed by an EglManager [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/glutil/EglManager.java] object. Add a dependency to the BUILD
file to use EglManager [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/glutil/EglManager.java], "//mediapipe/java/com/google/mediapipe/glutil".

In MainActivity, add the following declarations:

private EglManager eglManager;
private ExternalTextureConverter converter;

In the onCreate(Bundle) function, add a statement to initialize the
eglManager object before requesting camera permissions:

eglManager = new EglManager(null);

Recall that we defined the onResume() function in MainActivity to confirm
camera permissions have been granted and call startCamera(). Before this
check, add the following line in onResume() to initialize the converter
object:

converter = new ExternalTextureConverter(eglManager.getContext());

This converter now uses the GLContext managed by eglManager.

We also need to override the onPause() function in the MainActivity so that
if the application goes into a paused state, we close the converter properly:

@Override
protected void onPause() {
 super.onPause();
 converter.close();
}

To pipe the output of previewFrameTexture to the converter, add the
following block of code to setupPreviewDisplayView():

previewDisplayView
 .getHolder()
 .addCallback(
 new SurfaceHolder.Callback() {
 @Override
 public void surfaceCreated(SurfaceHolder holder) {}

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
 // (Re-)Compute the ideal size of the camera-preview display (the area that the
 // camera-preview frames get rendered onto, potentially with scaling and rotation)
 // based on the size of the SurfaceView that contains the display.
 Size viewSize = new Size(width, height);
 Size displaySize = cameraHelper.computeDisplaySizeFromViewSize(viewSize);

 // Connect the converter to the camera-preview frames as its input (via
 // previewFrameTexture), and configure the output width and height as the computed
 // display size.
 converter.setSurfaceTextureAndAttachToGLContext(
 previewFrameTexture, displaySize.getWidth(), displaySize.getHeight());
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {}
 });

In this code block, we add a custom SurfaceHolder.Callback [https://developer.android.com/reference/android/view/SurfaceHolder.Callback.html] to
previewDisplayView and implement the surfaceChanged(SurfaceHolder holder, int format, int width, int height) function to compute an appropriate display size
of the camera frames on the device screen and to tie the previewFrameTexture
object and send frames of the computed displaySize to the converter.

We are now ready to use camera frames in a MediaPipe graph.

Using a MediaPipe graph in Android

Add relevant dependencies

To use a MediaPipe graph, we need to add dependencies to the MediaPipe framework
on Android. We will first add a build rule to build a cc_binary using JNI code
of the MediaPipe framework and then build a cc_library rule to use this binary
in our application. Add the following code block to your BUILD file:

cc_binary(
 name = "libmediapipe_jni.so",
 linkshared = 1,
 linkstatic = 1,
 deps = [
 "//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni",
],
)

cc_library(
 name = "mediapipe_jni_lib",
 srcs = [":libmediapipe_jni.so"],
 alwayslink = 1,
)

Add the dependency ":mediapipe_jni_lib" to the mediapipe_lib build rule in
the BUILD file.

Next, we need to add dependencies specific to the MediaPipe graph we want to use
in the application.

First, add dependencies to all calculator code in the libmediapipe_jni.so
build rule:

"//mediapipe/graphs/edge_detection:mobile_calculators",

MediaPipe graphs are .pbtxt files, but to use them in the application, we need
to use the mediapipe_binary_graph build rule to generate a .binarypb file.

In the helloworld android binary build rule, add the mediapipe_binary_graph
target specific to the graph as an asset:

assets = [
 "//mediapipe/graphs/edge_detection:mobile_gpu_binary_graph",
],
assets_dir = "",

In the assets build rule, you can also add other assets such as TensorFlowLite
models used in your graph.

In addition, add additional manifest_values for properties specific to the
graph, to be later retrieved in MainActivity:

manifest_values = {
 "applicationId": "com.google.mediapipe.apps.basic",
 "appName": "Hello World",
 "mainActivity": ".MainActivity",
 "cameraFacingFront": "False",
 "binaryGraphName": "mobile_gpu.binarypb",
 "inputVideoStreamName": "input_video",
 "outputVideoStreamName": "output_video",
},

Note that binaryGraphName indicates the filename of the binary graph,
determined by the output_name field in the mediapipe_binary_graph target.
inputVideoStreamName and outputVideoStreamName are the input and output
video stream name specified in the graph respectively.

Now, the MainActivity needs to load the MediaPipe framework. Also, the
framework uses OpenCV, so MainActvity should also load OpenCV. Use the
following code in MainActivity (inside the class, but not inside any function)
to load both dependencies:

static {
 // Load all native libraries needed by the app.
 System.loadLibrary("mediapipe_jni");
 System.loadLibrary("opencv_java3");
}

Use the graph in MainActivity

First, we need to load the asset which contains the .binarypb compiled from
the .pbtxt file of the graph. To do this, we can use a MediaPipe utility,
AndroidAssetUtil [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/framework/AndroidAssetUtil.java].

Initialize the asset manager in onCreate(Bundle) before initializing
eglManager:

// Initialize asset manager so that MediaPipe native libraries can access the app assets, e.g.,
// binary graphs.
AndroidAssetUtil.initializeNativeAssetManager(this);

Now, we need to setup a FrameProcessor [https://github.com/google/mediapipe/tree/master/mediapipe/java/com/google/mediapipe/components/FrameProcessor.java] object that sends camera frames
prepared by the converter to the MediaPipe graph and runs the graph, prepares
the output and then updates the previewDisplayView to display the output. Add
the following code to declare the FrameProcessor:

private FrameProcessor processor;

and initialize it in onCreate(Bundle) after initializing eglManager:

processor =
 new FrameProcessor(
 this,
 eglManager.getNativeContext(),
 applicationInfo.metaData.getString("binaryGraphName"),
 applicationInfo.metaData.getString("inputVideoStreamName"),
 applicationInfo.metaData.getString("outputVideoStreamName"));

The processor needs to consume the converted frames from the converter for
processing. Add the following line to onResume() after initializing the
converter:

converter.setConsumer(processor);

The processor should send its output to previewDisplayView To do this, add
the following function definitions to our custom SurfaceHolder.Callback [https://developer.android.com/reference/android/view/SurfaceHolder.Callback.html]:

@Override
public void surfaceCreated(SurfaceHolder holder) {
 processor.getVideoSurfaceOutput().setSurface(holder.getSurface());
}

@Override
public void surfaceDestroyed(SurfaceHolder holder) {
 processor.getVideoSurfaceOutput().setSurface(null);
}

When the SurfaceHolder is created, we had the Surface to the
VideoSurfaceOutput of the processor. When it is destroyed, we remove it from
the VideoSurfaceOutput of the processor.

And that’s it! You should now be able to successfully build and run the
application on the device and see Sobel edge detection running on a live camera
feed! Congrats!

[image: ../_images/edge_detection_android_gpu.gif]edge_detection_android_gpu_gif

If you ran into any issues, please see the full code of the tutorial
here [https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic].

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/hello_world_cpp
title: Hello World! in C++
parent: MediaPipe in C++
grand_parent: Getting Started
nav_order: 1

Hello World! in C++

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

	Ensure you have a working version of MediaPipe. See
installation instructions.

	To run the hello world [https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/hello_world/hello_world.cc] example:

$ git clone https://github.com/google/mediapipe.git
$ cd mediapipe

$ export GLOG_logtostderr=1
Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' as desktop GPU is not supported currently.
$ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
 mediapipe/examples/desktop/hello_world:hello_world

It should print 10 rows of Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

	The hello world [https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/hello_world/hello_world.cc] example uses a simple MediaPipe graph in the
PrintHelloWorld() function, defined in a CalculatorGraphConfig [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto] proto.

absl::Status PrintHelloWorld() {
 // Configures a simple graph, which concatenates 2 PassThroughCalculators.
 CalculatorGraphConfig config = ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
 input_stream: "in"
 output_stream: "out"
 node {
 calculator: "PassThroughCalculator"
 input_stream: "in"
 output_stream: "out1"
 }
 node {
 calculator: "PassThroughCalculator"
 input_stream: "out1"
 output_stream: "out"
 }
)");

You can visualize this graph using
MediaPipe Visualizer [https://viz.mediapipe.dev] by pasting the
CalculatorGraphConfig content below into the visualizer. See
here for help on the visualizer.

 input_stream: "in"
 output_stream: "out"
 node {
 calculator: "PassThroughCalculator"
 input_stream: "in"
 output_stream: "out1"
 }
 node {
 calculator: "PassThroughCalculator"
 input_stream: "out1"
 output_stream: "out"
 }

This graph consists of 1 graph input stream (in) and 1 graph output stream
(out), and 2 PassThroughCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/pass_through_calculator.cc]s connected serially.

[image: ../_images/hello_world.png]hello_world graph

	Before running the graph, an OutputStreamPoller object is connected to the
output stream in order to later retrieve the graph output, and a graph run
is started with StartRun [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_graph.h].

CalculatorGraph graph;
MP_RETURN_IF_ERROR(graph.Initialize(config));
MP_ASSIGN_OR_RETURN(OutputStreamPoller poller,
 graph.AddOutputStreamPoller("out"));
MP_RETURN_IF_ERROR(graph.StartRun({}));

	The example then creates 10 packets (each packet contains a string “Hello
World!” with Timestamp values ranging from 0, 1, … 9) using the
MakePacket [https://github.com/google/mediapipe/tree/master/mediapipe/framework/packet.h] function, adds each packet into the graph through the in
input stream, and finally closes the input stream to finish the graph run.

for (int i = 0; i < 10; ++i) {
 MP_RETURN_IF_ERROR(graph.AddPacketToInputStream("in",
 MakePacket<std::string>("Hello World!").At(Timestamp(i))));
}
MP_RETURN_IF_ERROR(graph.CloseInputStream("in"));

	Through the OutputStreamPoller object the example then retrieves all 10
packets from the output stream, gets the string content out of each packet
and prints it to the output log.

mediapipe::Packet packet;
while (poller.Next(&packet)) {
 ABSL_LOG(INFO) << packet.Get<string>();
}

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/hello_world_ios
title: Hello World! on iOS
parent: MediaPipe on iOS
grand_parent: Getting Started
nav_order: 1

Hello World! on iOS

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Introduction

This codelab uses MediaPipe on an iOS device.

What you will learn

How to develop an iOS application that uses MediaPipe and run a MediaPipe graph
on iOS.

What you will build

A simple camera app for real-time Sobel edge detection applied to a live video
stream on an iOS device.

[image: ../_images/edge_detection_ios_gpu.gif]edge_detection_ios_gpu_gif

Setup

	Install MediaPipe on your system, see
MediaPipe installation guide for details.

	Setup your iOS device for development.

	Setup Bazel [https://bazel.build/] on your system to build and deploy the iOS app.

Graph for edge detection

We will be using the following graph, edge_detection_mobile_gpu.pbtxt [https://github.com/google/mediapipe/tree/master/mediapipe/graphs/edge_detection/edge_detection_mobile_gpu.pbtxt]:

MediaPipe graph that performs GPU Sobel edge detection on a live video stream.
Used in the examples
mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic:helloworld
and mediapipe/examples/ios/helloworld.

Images coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"

Converts RGB images into luminance images, still stored in RGB format.
node: {
 calculator: "LuminanceCalculator"
 input_stream: "input_video"
 output_stream: "luma_video"
}

Applies the Sobel filter to luminance images stored in RGB format.
node: {
 calculator: "SobelEdgesCalculator"
 input_stream: "luma_video"
 output_stream: "output_video"
}

A visualization of the graph is shown below:

[image: ../_images/edge_detection_mobile_gpu.png]edge_detection_mobile_gpu

This graph has a single input stream named input_video for all incoming frames
that will be provided by your device’s camera.

The first node in the graph, LuminanceCalculator, takes a single packet (image
frame) and applies a change in luminance using an OpenGL shader. The resulting
image frame is sent to the luma_video output stream.

The second node, SobelEdgesCalculator applies edge detection to incoming
packets in the luma_video stream and outputs results in output_video output
stream.

Our iOS application will display the output image frames of the output_video
stream.

Initial minimal application setup

We first start with a simple iOS application and demonstrate how to use bazel
to build it.

First, create an XCode project via File > New > Single View App.

Set the product name to “HelloWorld”, and use an appropriate organization
identifier, such as com.google.mediapipe. The organization identifier
alongwith the product name will be the bundle_id for the application, such as
com.google.mediapipe.HelloWorld.

Set the language to Objective-C.

Save the project to an appropriate location. Let’s call this
$PROJECT_TEMPLATE_LOC. So your project will be in the
$PROJECT_TEMPLATE_LOC/HelloWorld directory. This directory will contain
another directory named HelloWorld and an HelloWorld.xcodeproj file.

The HelloWorld.xcodeproj will not be useful for this tutorial, as we will use
bazel to build the iOS application. The content of the
$PROJECT_TEMPLATE_LOC/HelloWorld/HelloWorld directory is listed below:

	AppDelegate.h and AppDelegate.m

	ViewController.h and ViewController.m

	main.m

	Info.plist

	Main.storyboard and Launch.storyboard

	Assets.xcassets directory.

Note: In newer versions of Xcode, you may see additional files SceneDelegate.h
and SceneDelegate.m. Make sure to copy them too and add them to the BUILD
file mentioned below.

Copy these files to a directory named HelloWorld to a location that can access
the MediaPipe source code. For example, the source code of the application that
we will build in this tutorial is located in
mediapipe/examples/ios/HelloWorld. We will refer to this path as the
$APPLICATION_PATH throughout the codelab.

Note: MediaPipe provides Objective-C bindings for iOS. The edge detection
application in this tutorial and all iOS examples using MediaPipe use
Objective-C with C++ in .mm files.

Create a BUILD file in the $APPLICATION_PATH and add the following build
rules:

MIN_IOS_VERSION = "12.0"

load(
 "@build_bazel_rules_apple//apple:ios.bzl",
 "ios_application",
)

ios_application(
 name = "HelloWorldApp",
 bundle_id = "com.google.mediapipe.HelloWorld",
 families = [
 "iphone",
 "ipad",
],
 infoplists = ["Info.plist"],
 minimum_os_version = MIN_IOS_VERSION,
 provisioning_profile = "//mediapipe/examples/ios:developer_provisioning_profile",
 deps = [":HelloWorldAppLibrary"],
)

objc_library(
 name = "HelloWorldAppLibrary",
 srcs = [
 "AppDelegate.m",
 "ViewController.m",
 "main.m",
],
 hdrs = [
 "AppDelegate.h",
 "ViewController.h",
],
 data = [
 "Base.lproj/LaunchScreen.storyboard",
 "Base.lproj/Main.storyboard",
],
 sdk_frameworks = [
 "UIKit",
],
 deps = [],
)

The objc_library rule adds dependencies for the AppDelegate and
ViewController classes, main.m and the application storyboards. The
templated app depends only on the UIKit SDK.

The ios_application rule uses the HelloWorldAppLibrary Objective-C library
generated to build an iOS application for installation on your iOS device.

Note: You need to point to your own iOS developer provisioning profile to be
able to run the application on your iOS device.

To build the app, use the following command in a terminal:

bazel build -c opt --config=ios_arm64 <$APPLICATION_PATH>:HelloWorldApp'

For example, to build the HelloWorldApp application in
mediapipe/examples/ios/helloworld, use the following command:

bazel build -c opt --config=ios_arm64 mediapipe/examples/ios/helloworld:HelloWorldApp

Then, go back to XCode, open Window > Devices and Simulators, select your
device, and add the .ipa file generated by the command above to your device.
Here is the document on setting up and compiling iOS MediaPipe apps.

Open the application on your device. Since it is empty, it should display a
blank white screen.

Use the camera for the live view feed

In this tutorial, we will use the MPPCameraInputSource class to access and
grab frames from the camera. This class uses the AVCaptureSession API to get
the frames from the camera.

But before using this class, change the Info.plist file to support camera
usage in the app.

In ViewController.m, add the following import line:

#import "mediapipe/objc/MPPCameraInputSource.h"

Add the following to its implementation block to create an object
_cameraSource:

@implementation ViewController {
 // Handles camera access via AVCaptureSession library.
 MPPCameraInputSource* _cameraSource;
}

Add the following code to viewDidLoad():

-(void)viewDidLoad {
 [super viewDidLoad];

 _cameraSource = [[MPPCameraInputSource alloc] init];
 _cameraSource.sessionPreset = AVCaptureSessionPresetHigh;
 _cameraSource.cameraPosition = AVCaptureDevicePositionBack;
 // The frame's native format is rotated with respect to the portrait orientation.
 _cameraSource.orientation = AVCaptureVideoOrientationPortrait;
}

The code initializes _cameraSource, sets the capture session preset, and which
camera to use.

We need to get frames from the _cameraSource into our application
ViewController to display them. MPPCameraInputSource is a subclass of
MPPInputSource, which provides a protocol for its delegates, namely the
MPPInputSourceDelegate. So our application ViewController can be a delegate
of _cameraSource.

Update the interface definition of ViewController accordingly:

@interface ViewController () <MPPInputSourceDelegate>

To handle camera setup and process incoming frames, we should use a queue
different from the main queue. Add the following to the implementation block of
the ViewController:

// Process camera frames on this queue.
dispatch_queue_t _videoQueue;

In viewDidLoad(), add the following line after initializing the
_cameraSource object:

[_cameraSource setDelegate:self queue:_videoQueue];

And add the following code to initialize the queue before setting up the
_cameraSource object:

dispatch_queue_attr_t qosAttribute = dispatch_queue_attr_make_with_qos_class(
 DISPATCH_QUEUE_SERIAL, QOS_CLASS_USER_INTERACTIVE, /*relative_priority=*/0);
_videoQueue = dispatch_queue_create(kVideoQueueLabel, qosAttribute);

We will use a serial queue with the priority QOS_CLASS_USER_INTERACTIVE for
processing camera frames.

Add the following line after the header imports at the top of the file, before
the interface/implementation of the ViewController:

static const char* kVideoQueueLabel = "com.google.mediapipe.example.videoQueue";

Before implementing any method from MPPInputSourceDelegate protocol, we must
first set up a way to display the camera frames. MediaPipe provides another
utility called MPPLayerRenderer to display images on the screen. This utility
can be used to display CVPixelBufferRef objects, which is the type of the
images provided by MPPCameraInputSource to its delegates.

In ViewController.m, add the following import line:

#import "mediapipe/objc/MPPLayerRenderer.h"

To display images of the screen, we need to add a new UIView object called
_liveView to the ViewController.

Add the following lines to the implementation block of the ViewController:

// Display the camera preview frames.
IBOutlet UIView* _liveView;
// Render frames in a layer.
MPPLayerRenderer* _renderer;

Go to Main.storyboard, add a UIView object from the object library to the
View of the ViewController class. Add a referencing outlet from this view to
the _liveView object you just added to the ViewController class. Resize the
view so that it is centered and covers the entire application screen.

Go back to ViewController.m and add the following code to viewDidLoad() to
initialize the _renderer object:

_renderer = [[MPPLayerRenderer alloc] init];
_renderer.layer.frame = _liveView.layer.bounds;
[_liveView.layer addSublayer:_renderer.layer];
_renderer.frameScaleMode = MPPFrameScaleModeFillAndCrop;

To get frames from the camera, we will implement the following method:

// Must be invoked on _videoQueue.
- (void)processVideoFrame:(CVPixelBufferRef)imageBuffer
 timestamp:(CMTime)timestamp
 fromSource:(MPPInputSource*)source {
 if (source != _cameraSource) {
 NSLog(@"Unknown source: %@", source);
 return;
 }
 // Display the captured image on the screen.
 CFRetain(imageBuffer);
 dispatch_async(dispatch_get_main_queue(), ^{
 [_renderer renderPixelBuffer:imageBuffer];
 CFRelease(imageBuffer);
 });
}

This is a delegate method of MPPInputSource. We first check that we are
getting frames from the right source, i.e. the _cameraSource. Then we display
the frame received from the camera via _renderer on the main queue.

Now, we need to start the camera as soon as the view to display the frames is
about to appear. To do this, we will implement the
viewWillAppear:(BOOL)animated function:

-(void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
}

Before we start running the camera, we need the user’s permission to access it.
MPPCameraInputSource provides a function
requestCameraAccessWithCompletionHandler:(void (^_Nullable)(BOOL granted))handler to request camera access and do some work when the user has
responded. Add the following code to viewWillAppear:animated:

[_cameraSource requestCameraAccessWithCompletionHandler:^void(BOOL granted) {
 if (granted) {
 dispatch_async(_videoQueue, ^{
 [_cameraSource start];
 });
 }
}];

Before building the application, add the following dependencies to your BUILD
file:

sdk_frameworks = [
 "AVFoundation",
 "CoreGraphics",
 "CoreMedia",
],
deps = [
 "//mediapipe/objc:mediapipe_framework_ios",
 "//mediapipe/objc:mediapipe_input_sources_ios",
 "//mediapipe/objc:mediapipe_layer_renderer",
],

Now build and run the application on your iOS device. You should see a live
camera view feed after accepting camera permissions.

We are now ready to use camera frames in a MediaPipe graph.

Using a MediaPipe graph in iOS

Add relevant dependencies

We already added the dependencies of the MediaPipe framework code which contains
the iOS API to use a MediaPipe graph. To use a MediaPipe graph, we need to add a
dependency on the graph we intend to use in our application. Add the following
line to the data list in your BUILD file:

"//mediapipe/graphs/edge_detection:mobile_gpu_binary_graph",

Now add the dependency to the calculators used in this graph in the deps field
in the BUILD file:

"//mediapipe/graphs/edge_detection:mobile_calculators",

Finally, rename the file ViewController.m to ViewController.mm to support
Objective-C++.

Use the graph in ViewController

In ViewController.m, add the following import line:

#import "mediapipe/objc/MPPGraph.h"

Declare a static constant with the name of the graph, the input stream and the
output stream:

static NSString* const kGraphName = @"mobile_gpu";

static const char* kInputStream = "input_video";
static const char* kOutputStream = "output_video";

Add the following property to the interface of the ViewController:

// The MediaPipe graph currently in use. Initialized in viewDidLoad, started in viewWillAppear: and
// sent video frames on _videoQueue.
@property(nonatomic) MPPGraph* mediapipeGraph;

As explained in the comment above, we will initialize this graph in
viewDidLoad first. To do so, we need to load the graph from the .pbtxt file
using the following function:

+ (MPPGraph*)loadGraphFromResource:(NSString*)resource {
 // Load the graph config resource.
 NSError* configLoadError = nil;
 NSBundle* bundle = [NSBundle bundleForClass:[self class]];
 if (!resource || resource.length == 0) {
 return nil;
 }
 NSURL* graphURL = [bundle URLForResource:resource withExtension:@"binarypb"];
 NSData* data = [NSData dataWithContentsOfURL:graphURL options:0 error:&configLoadError];
 if (!data) {
 NSLog(@"Failed to load MediaPipe graph config: %@", configLoadError);
 return nil;
 }

 // Parse the graph config resource into mediapipe::CalculatorGraphConfig proto object.
 mediapipe::CalculatorGraphConfig config;
 config.ParseFromArray(data.bytes, data.length);

 // Create MediaPipe graph with mediapipe::CalculatorGraphConfig proto object.
 MPPGraph* newGraph = [[MPPGraph alloc] initWithGraphConfig:config];
 [newGraph addFrameOutputStream:kOutputStream outputPacketType:MPPPacketTypePixelBuffer];
 return newGraph;
}

Use this function to initialize the graph in viewDidLoad as follows:

self.mediapipeGraph = [[self class] loadGraphFromResource:kGraphName];

The graph should send the results of processing camera frames back to the
ViewController. Add the following line after initializing the graph to set the
ViewController as a delegate of the mediapipeGraph object:

self.mediapipeGraph.delegate = self;

To avoid memory contention while processing frames from the live video feed, add
the following line:

// Set maxFramesInFlight to a small value to avoid memory contention for real-time processing.
self.mediapipeGraph.maxFramesInFlight = 2;

Now, start the graph when the user has granted the permission to use the camera
in our app:

[_cameraSource requestCameraAccessWithCompletionHandler:^void(BOOL granted) {
 if (granted) {
 // Start running self.mediapipeGraph.
 NSError* error;
 if (![self.mediapipeGraph startWithError:&error]) {
 NSLog(@"Failed to start graph: %@", error);
 }
 else if (![self.mediapipeGraph waitUntilIdleWithError:&error]) {
 NSLog(@"Failed to complete graph initial run: %@", error);
 }

 dispatch_async(_videoQueue, ^{
 [_cameraSource start];
 });
 }
}];

Note: It is important to start the graph before starting the camera and wait
until completion, so that the graph is ready to process frames as soon as the
camera starts sending them.

Earlier, when we received frames from the camera in the processVideoFrame
function, we displayed them in the _liveView using the _renderer. Now, we
need to send those frames to the graph and render the results instead. Modify
this function’s implementation to do the following:

- (void)processVideoFrame:(CVPixelBufferRef)imageBuffer
 timestamp:(CMTime)timestamp
 fromSource:(MPPInputSource*)source {
 if (source != _cameraSource) {
 NSLog(@"Unknown source: %@", source);
 return;
 }
 [self.mediapipeGraph sendPixelBuffer:imageBuffer
 intoStream:kInputStream
 packetType:MPPPacketTypePixelBuffer];
}

We send the imageBuffer to self.mediapipeGraph as a packet of type
MPPPacketTypePixelBuffer into the input stream kInputStream, i.e.
“input_video”.

The graph will run with this input packet and output a result in
kOutputStream, i.e. “output_video”. We can implement the following delegate
method to receive packets on this output stream and display them on the screen:

- (void)mediapipeGraph:(MPPGraph*)graph
 didOutputPixelBuffer:(CVPixelBufferRef)pixelBuffer
 fromStream:(const std::string&)streamName {
 if (streamName == kOutputStream) {
 // Display the captured image on the screen.
 CVPixelBufferRetain(pixelBuffer);
 dispatch_async(dispatch_get_main_queue(), ^{
 [_renderer renderPixelBuffer:pixelBuffer];
 CVPixelBufferRelease(pixelBuffer);
 });
 }
}

Update the interface definition of ViewController with MPPGraphDelegate:

@interface ViewController () <MPPGraphDelegate, MPPInputSourceDelegate>

And that is all! Build and run the app on your iOS device. You should see the
results of running the edge detection graph on a live video feed. Congrats!

[image: ../_images/edge_detection_ios_gpu.gif]edge_detection_ios_gpu_gif

Please note that the iOS examples now use a common [https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/common] template app. The code in
this tutorial is used in the common [https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/common] template app. The helloworld [https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/helloworld] app has the
appropriate BUILD file dependencies for the edge detection graph.

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/help
title: Getting Help
parent: Getting Started
nav_order: 8

Getting Help

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Technical questions

For help with technical or algorithmic questions, visit
Stack Overflow [https://stackoverflow.com/questions/tagged/mediapipe] to find
answers and support from the MediaPipe community.

Bugs and feature requests

To report bugs or make feature requests,
file an issue on GitHub [https://github.com/google/mediapipe/issues].

If you open a GitHub issue, here is our policy:

	It must be a bug, a feature request, or a significant problem with documentation (for small doc fixes please send a PR instead).

	The form below must be filled out.

Here’s why we have that policy: MediaPipe developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.

System information

	Have I written custom code:

	OS Platform and Distribution (e.g., Linux Ubuntu 16.04):

	Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue happens on mobile device:

	Bazel version:

	Android Studio, NDK, SDK versions (if issue is related to building in mobile dev environment):

	Xcode & Tulsi version (if issue is related to building in mobile dev environment):

	Exact steps to reproduce:

Describe the problem

Describe the problem clearly here. Be sure to convey here why it’s a bug in MediaPipe or a feature request.

Source code / logs

Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached instead of being pasted into the issue as text.

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/install
title: Installation
parent: Getting Started
nav_order: 6

Installation

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Note: To interoperate with OpenCV, OpenCV 3.x to 4.1 are preferred. OpenCV
2.x currently works but interoperability support may be deprecated in the
future.

Note: If you plan to use TensorFlow calculators and example apps, there is a
known issue with gcc and g++ version 6.3 and 7.3. Please use other versions.

Note: To make Mediapipe work with TensorFlow, please set Python 3.7 as the
default Python version and install the Python “six” library by running pip3 install --user six.

Installing on Debian and Ubuntu

	Install Bazelisk.

Follow the official
Bazel documentation [https://docs.bazel.build/versions/master/install-bazelisk.html]
to install Bazelisk.

	Checkout MediaPipe repository.

$ cd $HOME
$ git clone --depth 1 https://github.com/google/mediapipe.git

Change directory into MediaPipe root directory
$ cd mediapipe

	Install OpenCV and FFmpeg.

Option 1. Use package manager tool to install the pre-compiled OpenCV
libraries. FFmpeg will be installed via libopencv-video-dev.

OS | OpenCV
——————– | ——
Debian 9 (stretch) | 2.4
Debian 10 (buster) | 3.2
Debian 11 (bullseye) | 4.5
Ubuntu 16.04 LTS | 2.4
Ubuntu 18.04 LTS | 3.2
Ubuntu 20.04 LTS | 4.2
Ubuntu 20.04 LTS | 4.2
Ubuntu 21.04 | 4.5

$ sudo apt-get install -y \
 libopencv-core-dev \
 libopencv-highgui-dev \
 libopencv-calib3d-dev \
 libopencv-features2d-dev \
 libopencv-imgproc-dev \
 libopencv-video-dev

Note. On Debian 11/Ubuntu 21.04 where OpenCV 4.5 is installed with
libopencv-video-dev, libopencv-contrib-dev should also be installed.

$ sudo apt-get install -y libopencv-contrib-dev

MediaPipe’s opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD] and WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE] are already configured
for OpenCV 2/3 and should work correctly on any architecture:

WORKSPACE
new_local_repository(
 name = "linux_opencv",
 build_file = "@//third_party:opencv_linux.BUILD",
 path = "/usr",
)

opencv_linux.BUILD for OpenCV 2/3 installed from Debian package
cc_library(
 name = "opencv",
 linkopts = [
 "-l:libopencv_core.so",
 "-l:libopencv_calib3d.so",
 "-l:libopencv_features2d.so",
 "-l:libopencv_highgui.so",
 "-l:libopencv_imgcodecs.so",
 "-l:libopencv_imgproc.so",
 "-l:libopencv_video.so",
 "-l:libopencv_videoio.so",
],
)

For OpenCV 4 you need to modify opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD] taking into account
current architecture:

WORKSPACE
new_local_repository(
 name = "linux_opencv",
 build_file = "@//third_party:opencv_linux.BUILD",
 path = "/usr",
)

opencv_linux.BUILD for OpenCV 4 installed from Debian package
cc_library(
 name = "opencv",
 hdrs = glob([
 # Uncomment according to your multiarch value (gcc -print-multiarch):
 # "include/aarch64-linux-gnu/opencv4/opencv2/cvconfig.h",
 # "include/arm-linux-gnueabihf/opencv4/opencv2/cvconfig.h",
 # "include/x86_64-linux-gnu/opencv4/opencv2/cvconfig.h",
 "include/opencv4/opencv2/**/*.h*",
]),
 includes = [
 # Uncomment according to your multiarch value (gcc -print-multiarch):
 # "include/aarch64-linux-gnu/opencv4/",
 # "include/arm-linux-gnueabihf/opencv4/",
 # "include/x86_64-linux-gnu/opencv4/",
 "include/opencv4/",
],
 linkopts = [
 "-l:libopencv_core.so",
 "-l:libopencv_calib3d.so",
 "-l:libopencv_features2d.so",
 "-l:libopencv_highgui.so",
 "-l:libopencv_imgcodecs.so",
 "-l:libopencv_imgproc.so",
 "-l:libopencv_video.so",
 "-l:libopencv_videoio.so",
],
)

Option 2. Run setup_opencv.sh [https://github.com/google/mediapipe/blob/master/setup_opencv.sh] to automatically build OpenCV from
source and modify MediaPipe’s OpenCV config. This option will do all steps
defined in Option 3 automatically.

Option 3. Follow OpenCV’s
documentation [https://docs.opencv.org/3.4.6/d7/d9f/tutorial_linux_install.html]
to manually build OpenCV from source code.

You may need to modify WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE] and opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD] to point
MediaPipe to your own OpenCV libraries. Assume OpenCV would be installed to
/usr/local/ which is recommended by default.

OpenCV 2/3 setup:

WORKSPACE
new_local_repository(
 name = "linux_opencv",
 build_file = "@//third_party:opencv_linux.BUILD",
 path = "/usr/local",
)

opencv_linux.BUILD for OpenCV 2/3 installed to /usr/local
cc_library(
 name = "opencv",
 linkopts = [
 "-L/usr/local/lib",
 "-l:libopencv_core.so",
 "-l:libopencv_calib3d.so",
 "-l:libopencv_features2d.so",
 "-l:libopencv_highgui.so",
 "-l:libopencv_imgcodecs.so",
 "-l:libopencv_imgproc.so",
 "-l:libopencv_video.so",
 "-l:libopencv_videoio.so",
],
)

OpenCV 4 setup:

WORKSPACE
new_local_repository(
 name = "linux_opencv",
 build_file = "@//third_party:opencv_linux.BUILD",
 path = "/usr/local",
)

opencv_linux.BUILD for OpenCV 4 installed to /usr/local
cc_library(
 name = "opencv",
 hdrs = glob([
 "include/opencv4/opencv2/**/*.h*",
]),
 includes = [
 "include/opencv4/",
],
 linkopts = [
 "-L/usr/local/lib",
 "-l:libopencv_core.so",
 "-l:libopencv_calib3d.so",
 "-l:libopencv_features2d.so",
 "-l:libopencv_highgui.so",
 "-l:libopencv_imgcodecs.so",
 "-l:libopencv_imgproc.so",
 "-l:libopencv_video.so",
 "-l:libopencv_videoio.so",
],
)

Current FFmpeg setup is defined in ffmpeg_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/ffmpeg_linux.BUILD] and should work
for any architecture:

WORKSPACE
new_local_repository(
 name = "linux_ffmpeg",
 build_file = "@//third_party:ffmpeg_linux.BUILD",
 path = "/usr"
)

ffmpeg_linux.BUILD for FFmpeg installed from Debian package
cc_library(
 name = "libffmpeg",
 linkopts = [
 "-l:libavcodec.so",
 "-l:libavformat.so",
 "-l:libavutil.so",
],
)

	For running desktop examples on Linux only (not on OS X) with GPU
acceleration.

Requires a GPU with EGL driver support.
Can use mesa GPU libraries for desktop, (or Nvidia/AMD equivalent).
sudo apt-get install mesa-common-dev libegl1-mesa-dev libgles2-mesa-dev

To compile with GPU support, replace
--define MEDIAPIPE_DISABLE_GPU=1
with
--copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11
when building GPU examples.

	Run the Hello World! in C++ example.

$ export GLOG_logtostderr=1

if you are running on Linux desktop with CPU only
$ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
 mediapipe/examples/desktop/hello_world:hello_world

If you are running on Linux desktop with GPU support enabled (via mesa drivers)
$ bazel run --copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11 \
 mediapipe/examples/desktop/hello_world:hello_world

Should print:
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

If you run into a build error, please read
Troubleshooting to find the solutions of several common
build issues.

Installing on CentOS

Disclaimer: Running MediaPipe on CentOS is experimental.

	Install Bazelisk.

Follow the official
Bazel documentation [https://docs.bazel.build/versions/master/install-bazelisk.html]
to install Bazelisk.

	Checkout MediaPipe repository.

$ git clone --depth 1 https://github.com/google/mediapipe.git

Change directory into MediaPipe root directory
$ cd mediapipe

	Install OpenCV.

Option 1. Use package manager tool to install the pre-compiled version.

Note: yum installs OpenCV 2.4.5, which may have an opencv/gstreamer
issue [https://github.com/opencv/opencv/issues/4592].

$ sudo yum install opencv-devel

Option 2. Build OpenCV from source code.

Note: You may need to modify WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE], opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD] and
ffmpeg_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/ffmpeg_linux.BUILD] to point MediaPipe to your own OpenCV and FFmpeg
libraries. For example if OpenCV and FFmpeg are both manually installed in
“/usr/local/”, you will need to update: (1) the “linux_opencv” and
“linux_ffmpeg” new_local_repository rules in WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE], (2) the “opencv”
cc_library rule in opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD], and (3) the “libffmpeg”
cc_library rule in ffmpeg_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/ffmpeg_linux.BUILD]. These 3 changes are shown below:

new_local_repository(
 name = "linux_opencv",
 build_file = "@//third_party:opencv_linux.BUILD",
 path = "/usr/local",
)

new_local_repository(
 name = "linux_ffmpeg",
 build_file = "@//third_party:ffmpeg_linux.BUILD",
 path = "/usr/local",
)

cc_library(
 name = "opencv",
 srcs = glob(
 [
 "lib/libopencv_core.so",
 "lib/libopencv_highgui.so",
 "lib/libopencv_imgcodecs.so",
 "lib/libopencv_imgproc.so",
 "lib/libopencv_video.so",
 "lib/libopencv_videoio.so",
],
),
 hdrs = glob([
 # For OpenCV 3.x
 "include/opencv2/**/*.h*",
 # For OpenCV 4.x
 # "include/opencv4/opencv2/**/*.h*",
]),
 includes = [
 # For OpenCV 3.x
 "include/",
 # For OpenCV 4.x
 # "include/opencv4/",
],
 linkstatic = 1,
 visibility = ["//visibility:public"],
)

cc_library(
 name = "libffmpeg",
 srcs = glob(
 [
 "lib/libav*.so",
],
),
 hdrs = glob(["include/libav*/*.h"]),
 includes = ["include"],
 linkopts = [
 "-lavcodec",
 "-lavformat",
 "-lavutil",
],
 linkstatic = 1,
 visibility = ["//visibility:public"],
)

	Run the Hello World! in C++ example.

$ export GLOG_logtostderr=1
Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' if you are running on Linux desktop with CPU only
$ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
 mediapipe/examples/desktop/hello_world:hello_world

Should print:
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

If you run into a build error, please read
Troubleshooting to find the solutions of several common
build issues.

Installing on macOS

	Prework:

	Install Homebrew [https://brew.sh].

	Install Xcode [https://developer.apple.com/xcode/] and its Command Line
Tools by xcode-select --install.

	Install Bazelisk.

Follow the official
Bazel documentation [https://docs.bazel.build/versions/master/install-bazelisk.html]
to install Bazelisk.

	Checkout MediaPipe repository.

$ git clone --depth 1 https://github.com/google/mediapipe.git

$ cd mediapipe

	Install OpenCV and FFmpeg.

Option 1. Use HomeBrew package manager tool to install the pre-compiled
OpenCV 3 libraries. FFmpeg will be installed via OpenCV.

$ brew install opencv@3

There is a known issue caused by the glog dependency. Uninstall glog.
$ brew uninstall --ignore-dependencies glog

Option 2. Use MacPorts package manager tool to install the OpenCV libraries.

$ port install opencv

Note: when using MacPorts, please edit the WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE],
opencv_macos.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_macos.BUILD], and ffmpeg_macos.BUILD [https://github.com/google/mediapipe/tree/master/third_party/ffmpeg_macos.BUILD] files like the following:

new_local_repository(
 name = "macos_opencv",
 build_file = "@//third_party:opencv_macos.BUILD",
 path = "/opt",
)

new_local_repository(
 name = "macos_ffmpeg",
 build_file = "@//third_party:ffmpeg_macos.BUILD",
 path = "/opt",
)

cc_library(
 name = "opencv",
 srcs = glob(
 [
 "local/lib/libopencv_core.dylib",
 "local/lib/libopencv_highgui.dylib",
 "local/lib/libopencv_imgcodecs.dylib",
 "local/lib/libopencv_imgproc.dylib",
 "local/lib/libopencv_video.dylib",
 "local/lib/libopencv_videoio.dylib",
],
),
 hdrs = glob(["local/include/opencv2/**/*.h*"]),
 includes = ["local/include/"],
 linkstatic = 1,
 visibility = ["//visibility:public"],
)

cc_library(
 name = "libffmpeg",
 srcs = glob(
 [
 "local/lib/libav*.dylib",
],
),
 hdrs = glob(["local/include/libav*/*.h"]),
 includes = ["local/include/"],
 linkopts = [
 "-lavcodec",
 "-lavformat",
 "-lavutil",
],
 linkstatic = 1,
 visibility = ["//visibility:public"],
)

	Make sure that Python 3 and the Python “six” library are installed.

$ brew install python
$ sudo ln -s -f /usr/local/bin/python3.7 /usr/local/bin/python
$ python --version
Python 3.7.4
$ pip3 install --user six

	Run the Hello World! in C++ example.

$ export GLOG_logtostderr=1
Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' as desktop GPU is currently not supported
$ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
 mediapipe/examples/desktop/hello_world:hello_world

Should print:
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

If you run into a build error, please read
Troubleshooting to find the solutions of several common
build issues.

Installing on Windows

Disclaimer: Running MediaPipe on Windows is experimental.

Note: building MediaPipe Android apps is still not possible on native
Windows. Please do this in WSL instead and see the WSL setup instruction in the
next section.

	Install MSYS2 [https://www.msys2.org/] and edit the %PATH% environment
variable.

If MSYS2 is installed to C:\msys64, add C:\msys64\usr\bin to your
%PATH% environment variable.

	Install necessary packages.

C:\> pacman -S git patch unzip

	Install Python and allow the executable to edit the %PATH% environment
variable.

Download Python Windows executable from
https://www.python.org/downloads/windows/ and install.

	Install Visual C++ Build Tools 2019 and WinSDK

Go to
the VisualStudio website [https://visualstudio.microsoft.com/visual-cpp-build-tools],
download build tools, and install Microsoft Visual C++ 2019 Redistributable
and Microsoft Build Tools 2019.

Download the WinSDK from
the official MicroSoft website [https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/]
and install.

	Install Bazel or Bazelisk and add the location of the Bazel executable to
the %PATH% environment variable.

Option 1. Follow
the official Bazel documentation [https://docs.bazel.build/versions/master/install-windows.html]
to install Bazel 6.1.1 or higher.

Option 2. Follow the official
Bazel documentation [https://docs.bazel.build/versions/master/install-bazelisk.html]
to install Bazelisk.

	Set Bazel variables. Learn more details about
“Build on Windows” [https://docs.bazel.build/versions/master/windows.html#build-c-with-msvc]
in the Bazel official documentation.

Please find the exact paths and version numbers from your local version.
C:\> set BAZEL_VS=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools
C:\> set BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC
C:\> set BAZEL_VC_FULL_VERSION=<Your local VC version>
C:\> set BAZEL_WINSDK_FULL_VERSION=<Your local WinSDK version>

	Checkout MediaPipe repository.

C:\Users\Username\mediapipe_repo> git clone --depth 1 https://github.com/google/mediapipe.git

Change directory into MediaPipe root directory
C:\Users\Username\mediapipe_repo> cd mediapipe

	Install OpenCV.

Download the Windows executable from https://opencv.org/releases/ and
install. We currently use OpenCV 3.4.10. Remember to edit the WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE]
file if OpenCV is not installed at C:\opencv.

new_local_repository(
 name = "windows_opencv",
 build_file = "@//third_party:opencv_windows.BUILD",
 path = "C:\\<path to opencv>\\build",
)

	Run the Hello World! in C++ example.

Note: For building MediaPipe on Windows, please add --action_env PYTHON_BIN_PATH="C://path//to//python.exe" to the build command.
Alternatively, you can follow
issue 724 [https://github.com/google/mediapipe/issues/724] to fix the
python configuration manually.

C:\Users\Username\mediapipe_repo>bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 --action_env PYTHON_BIN_PATH="C://python_36//python.exe" mediapipe/examples/desktop/hello_world

C:\Users\Username\mediapipe_repo>set GLOG_logtostderr=1

C:\Users\Username\mediapipe_repo>bazel-bin\mediapipe\examples\desktop\hello_world\hello_world.exe

should print:
I20200514 20:43:12.277598 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.278597 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.279618 1200 hello_world.cc:56] Hello World!
I20200514 20:43:12.280613 1200 hello_world.cc:56] Hello World!

If you run into a build error, please read
Troubleshooting to find the solutions of several common
build issues.

Installing on Windows Subsystem for Linux (WSL)

Note: The pre-built OpenCV packages don’t support cameras in WSL. Unless you
compile [https://funvision.blogspot.com/2019/12/opencv-web-camera-and-video-streams-in.html]
OpenCV with FFMPEG and GStreamer in WSL, the live demos won’t work with any
cameras. Alternatively, you use a video file as input.

	Follow the
instruction [https://docs.microsoft.com/en-us/windows/wsl/install-win10] to
install Windows Subsystem for Linux (Ubuntu).

	Install Windows ADB and start the ADB server in Windows.

Note: Windows’ and WSL’s adb versions must be the same version, e.g., if WSL
has ADB 1.0.39, you need to download the corresponding Windows ADB from
here [https://dl.google.com/android/repository/platform-tools_r30.0.3-windows.zip].

	Launch WSL.

Note: All the following steps will be executed in WSL. The Windows directory
of the Linux Subsystem can be found in
C:\Users\YourUsername\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_SomeID\LocalState\rootfs\home

	Install the needed packages.

username@DESKTOP-TMVLBJ1:~$ sudo apt-get update && sudo apt-get install -y build-essential git python zip adb openjdk-8-jdk

	Install Bazelisk.

Follow the official
Bazel documentation [https://docs.bazel.build/versions/master/install-bazelisk.html]
to install Bazelisk.

	Checkout MediaPipe repository.

username@DESKTOP-TMVLBJ1:~$ git clone --depth 1 https://github.com/google/mediapipe.git

username@DESKTOP-TMVLBJ1:~$ cd mediapipe

	Install OpenCV and FFmpeg.

Option 1. Use package manager tool to install the pre-compiled OpenCV
libraries. FFmpeg will be installed via libopencv-video-dev.

username@DESKTOP-TMVLBJ1:~/mediapipe$ sudo apt-get install libopencv-core-dev libopencv-highgui-dev \
 libopencv-calib3d-dev libopencv-features2d-dev \
 libopencv-imgproc-dev libopencv-video-dev

Option 2. Run setup_opencv.sh [https://github.com/google/mediapipe/blob/master/setup_opencv.sh] to automatically build OpenCV from source
and modify MediaPipe’s OpenCV config.

Option 3. Follow OpenCV’s
documentation [https://docs.opencv.org/3.4.6/d7/d9f/tutorial_linux_install.html]
to manually build OpenCV from source code.

Note: You may need to modify WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE] and opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD] to
point MediaPipe to your own OpenCV libraries, e.g., if OpenCV 4 is installed
in “/usr/local/”, you need to update the “linux_opencv” new_local_repository
rule in WORKSPACE [https://github.com/google/mediapipe/blob/master/WORKSPACE] and “opencv” cc_library rule in opencv_linux.BUILD [https://github.com/google/mediapipe/tree/master/third_party/opencv_linux.BUILD]
like the following:

new_local_repository(
 name = "linux_opencv",
 build_file = "@//third_party:opencv_linux.BUILD",
 path = "/usr/local",
)

cc_library(
 name = "opencv",
 srcs = glob(
 [
 "lib/libopencv_core.so",
 "lib/libopencv_highgui.so",
 "lib/libopencv_imgcodecs.so",
 "lib/libopencv_imgproc.so",
 "lib/libopencv_video.so",
 "lib/libopencv_videoio.so",
],
),
 hdrs = glob(["include/opencv4/**/*.h*"]),
 includes = ["include/opencv4/"],
 linkstatic = 1,
 visibility = ["//visibility:public"],
)

	Run the Hello World! in C++ example.

username@DESKTOP-TMVLBJ1:~/mediapipe$ export GLOG_logtostderr=1

Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' as desktop GPU is currently not supported
username@DESKTOP-TMVLBJ1:~/mediapipe$ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
 mediapipe/examples/desktop/hello_world:hello_world

Should print:
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

If you run into a build error, please
read Troubleshooting to find the solutions of several
common build issues.

Installing using Docker

This will use a Docker image that will isolate mediapipe’s installation from the rest of the system.

	Install Docker [https://docs.docker.com/install/#supported-platforms] on
your host system.

	Build a docker image with tag “mediapipe”.

$ git clone --depth 1 https://github.com/google/mediapipe.git
$ cd mediapipe
$ docker build --tag=mediapipe .

Should print:
Sending build context to Docker daemon 147.8MB
Step 1/9 : FROM ubuntu:latest
latest: Pulling from library/ubuntu
6abc03819f3e: Pull complete
05731e63f211: Pull complete
........
See http://bazel.build/docs/getting-started.html to start a new project!
Removing intermediate container 82901b5e79fa
---> f5d5f402071b
Step 9/9 : COPY . /mediapipe/
---> a95c212089c5
Successfully built a95c212089c5
Successfully tagged mediapipe:latest

	Run the Hello World! in C++ example.

$ docker run -it --name mediapipe mediapipe:latest

root@bca08b91ff63:/mediapipe# GLOG_logtostderr=1 bazel run --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/hello_world

Should print:
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

If you run into a build error, please
read Troubleshooting to find the solutions of several
common build issues.

	Build a MediaPipe Android example.

$ docker run -it --name mediapipe mediapipe:latest

root@bca08b91ff63:/mediapipe# bash ./setup_android_sdk_and_ndk.sh

Should print:
Android NDK is now installed. Consider setting $ANDROID_NDK_HOME environment variable to be /root/Android/Sdk/ndk-bundle/android-ndk-r19c
Set android_ndk_repository and android_sdk_repository in WORKSPACE
Done

root@bca08b91ff63:/mediapipe# bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu:objectdetectiongpu

Should print:
Target //mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu:objectdetectiongpu up-to-date:
bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/objectdetectiongpu_deploy.jar
bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/objectdetectiongpu_unsigned.apk
bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/objectdetectiongpu.apk
INFO: Elapsed time: 144.462s, Critical Path: 79.47s
INFO: 1958 processes: 1 local, 1863 processwrapper-sandbox, 94 worker.
INFO: Build completed successfully, 2028 total actions

 layout: forward target: https://developers.google.com/mediapipe/framework/getting_started/ios title: MediaPipe on iOS parent: Getting Started has_children: true has_toc: false nav_order: 2

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/ios
title: MediaPipe on iOS
parent: Getting Started
has_children: true
has_toc: false
nav_order: 2

MediaPipe on iOS

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Please follow instructions below to build iOS example apps in the supported
MediaPipe solutions. To learn more about these
example apps, start from, start from
Hello World! on iOS.

Building iOS example apps

Prerequisite

	Install MediaPipe following these instructions.

	Install Xcode [https://developer.apple.com/xcode/], then install the
Command Line Tools using:

xcode-select --install

	Install Bazelisk [https://github.com/bazelbuild/bazelisk]
.

We recommend using Homebrew [https://brew.sh/] to get the latest versions.

brew install bazelisk

	Set Python 3.7 as the default Python version and install the Python “six”
library. This is needed for TensorFlow.

pip3 install --user six

	Clone the MediaPipe repository.

git clone https://github.com/google/mediapipe.git

Set up a bundle ID prefix

All iOS apps must have a bundle ID, and you must have a provisioning profile
that lets you install an app with that ID onto your phone. To avoid clashes
between different MediaPipe users, you need to configure a unique prefix for the
bundle IDs of our iOS demo apps.

If you have a custom provisioning profile, see
Custom provisioning below.

Otherwise, run this command to generate a unique prefix:

python3 mediapipe/examples/ios/link_local_profiles.py

Create an Xcode project

This allows you to edit and debug one of the example apps in Xcode. It also
allows you to make use of automatic provisioning (see later section).

	We will use a tool called Tulsi [https://tulsi.bazel.build/] for generating
Xcode projects from Bazel build configurations.

cd out of the mediapipe directory, then:
git clone https://github.com/bazelbuild/tulsi.git
cd tulsi
remove Xcode version from Tulsi's .bazelrc (see http://github.com/bazelbuild/tulsi#building-and-installing):
sed -i .orig '/xcode_version/d' .bazelrc
build and run Tulsi:
sh build_and_run.sh

This will install Tulsi.app inside the Applications directory in your
home directory.

Note: Please ensure the xcode_version in the
build_and_run.sh [https://github.com/bazelbuild/tulsi/blob/b1d0108e6a93dbe8ab01529b2c607b6b651f0759/build_and_run.sh#L26]
file in tulsi repo is the same version as installed in your system.

	Open mediapipe/Mediapipe.tulsiproj using the Tulsi app.

Tip: If Tulsi displays an error saying “Bazel could not be found”, press the
“Bazel…” button in the Packages tab and select the bazel executable in
your homebrew /bin/ directory.

	Select the MediaPipe config in the Configs tab, then press the Generate
button below. You will be asked for a location to save the Xcode project.
Once the project is generated, it will be opened in Xcode.

If you get an error about bundle IDs, see the
previous section.

Set up provisioning

To install applications on an iOS device, you need a provisioning profile. There
are two options:

	Automatic provisioning. This allows you to build and install an app on your
personal device. The provisioning profile is managed by Xcode, and has to be
updated often (it is valid for about a week).

	Custom provisioning. This uses a provisioning profile associated with an
Apple developer account. These profiles have a longer validity period and
can target multiple devices, but you need a paid developer account with
Apple to obtain one.

Automatic provisioning

	Create an Xcode project for MediaPipe, as discussed
earlier.

	In the project navigator in the left sidebar, select the “Mediapipe”
project.

	Select one of the application targets, e.g. HandTrackingGpuApp.

	Select the “Signing & Capabilities” tab.

	Check “Automatically manage signing”, and confirm the dialog box.

	Select “Your Name (Personal Team)” in the Team pop-up menu.

	This set-up needs to be done once for each application you want to install.
Repeat steps 3-6 as needed.

This generates provisioning profiles for each app you have selected. Now we need
to tell Bazel to use them. We have provided a script to make this easier.

	In the terminal, to the mediapipe directory where you cloned the
repository.

	Run this command:

python3 mediapipe/examples/ios/link_local_profiles.py

This will find and link the provisioning profile for all applications for which
you have enabled automatic provisioning in Xcode.

Note: once a profile expires, Xcode will generate a new one; you must then run
this script again to link the updated profiles.

Custom provisioning

	Obtain a provisioning profile from Apple.

Tip: You can use this command to see the provisioning profiles you have
previously downloaded using Xcode: open ~/Library/MobileDevice/"Provisioning Profiles". If there are none, generate and download a profile on
Apple’s developer site [https://developer.apple.com/account/resources/].

	Symlink or copy your provisioning profile to
mediapipe/mediapipe/provisioning_profile.mobileprovision.

cd mediapipe
ln -s ~/Downloads/MyProvisioningProfile.mobileprovision mediapipe/provisioning_profile.mobileprovision

Note: if you had previously set up automatic provisioning, you should remove the
provisioning_profile.mobileprovision symlink in each example’s directory,
since it will take precedence over the common one. You can also overwrite it
with your own profile if you need a different profile for different apps.

	Open mediapipe/examples/ios/bundle_id.bzl, and change the
BUNDLE_ID_PREFIX to a prefix associated with your provisioning profile.

Build and run an app using Xcode

	Create the Xcode project, and make sure you have set up either automatic or
custom provisioning.

	You can now select any of the MediaPipe demos in the target menu, and build
and run them as normal.

Note: When you ask Xcode to run an app, by default it will use the Debug
configuration. Some of our demos are computationally heavy; you may want to use
the Release configuration for better performance.

Note: Due to an incompatibility caused by one of our dependencies, MediaPipe
cannot be used for apps running on the iPhone Simulator on Apple Silicon (M1).

Tip: To switch build configuration in Xcode, click on the target menu, choose
“Edit Scheme…”, select the Run action, and switch the Build Configuration from
Debug to Release. Note that this is set independently for each target.

Tip: On the device, in Settings > General > Device Management, make sure the
developer (yourself) is trusted.

Build an app using the command line

	Make sure you have set up either automatic or custom provisioning.

	Using MediaPipe Hands for example, run:

bazel build -c opt --config=ios_arm64 mediapipe/examples/ios/handtrackinggpu:HandTrackingGpuApp

You may see a permission request from codesign in order to sign the app.

Tip: If you are using custom provisioning, you can run this
script [https://github.com/google/mediapipe/blob/master/build_ios_examples.sh]
to build all MediaPipe iOS example apps.

	In Xcode, open the Devices and Simulators window (command-shift-2).

	Make sure your device is connected. You will see a list of installed apps.
Press the “+” button under the list, and select the .ipa file built by
Bazel.

	You can now run the app on your device.

Tip: On the device, in Settings > General > Device Management, make sure the
developer (yourself) is trusted.

 layout: forward target: https://developers.google.com/mediapipe/ title: MediaPipe in JavaScript parent: Getting Started nav_order: 4

layout: forward
target: https://developers.google.com/mediapipe/
title: MediaPipe in JavaScript
parent: Getting Started
nav_order: 4

MediaPipe in JavaScript

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We are moving to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe starting April 3, 2023.

Ready-to-use JavaScript Solutions

MediaPipe currently offers the following solutions:

Solution | NPM Package | Example
————————— | ————————————— | ——-
Face Mesh | @mediapipe/face_mesh [https://www.npmjs.com/package/@mediapipe/face_mesh] | mediapipe.dev/demo/face_mesh [https://mediapipe.dev/demo/face_mesh]
Face Detection | @mediapipe/face_detection [https://www.npmjs.com/package/@mediapipe/face_detection] | mediapipe.dev/demo/face_detection [https://mediapipe.dev/demo/face_detection]
Hands | @mediapipe/hands [https://www.npmjs.com/package/@mediapipe/hands] | mediapipe.dev/demo/hands [https://mediapipe.dev/demo/hands]
Holistic | @mediapipe/holistic [https://www.npmjs.com/package/@mediapipe/holistic] | mediapipe.dev/demo/holistic [https://mediapipe.dev/demo/holistic]
Objectron | @mediapipe/objectron [https://www.npmjs.com/package/@mediapipe/objectron] | mediapipe.dev/demo/objectron [https://mediapipe.dev/demo/objectron]
Pose | @mediapipe/pose [https://www.npmjs.com/package/@mediapipe/pose] | mediapipe.dev/demo/pose [https://mediapipe.dev/demo/pose]
Selfie Segmentation | @mediapipe/selfie_segmentation [https://www.npmjs.com/package/@mediapipe/selfie_segmentation] | mediapipe.dev/demo/selfie_segmentation [https://mediapipe.dev/demo/selfie_segmentation]

Click on a solution link above for more information, including API and code
snippets.

Supported platforms:

Browser	Platform	Notes
——-	———————–	————————————–
Chrome	Android / Windows / Mac	Pixel 4 and older unsupported. Fuchsia
		unsupported.
Chrome	iOS	Camera unavailable in Chrome on iOS.
Safari	iPad/iPhone/Mac	iOS and Safari on iPad / iPhone /
		MacBook

The quickest way to get acclimated is to look at the examples above. Each demo
has a link to a CodePen [https://code.mediapipe.dev/codepen] so that you can edit the code and try it
yourself. We have included a number of utility packages to help you get started:

	@mediapipe/drawing_utils [https://www.npmjs.com/package/@mediapipe/drawing_utils] - Utilities to draw landmarks and
connectors.

	@mediapipe/camera_utils [https://www.npmjs.com/package/@mediapipe/camera_utils] - Utilities to operate the camera.

	@mediapipe/control_utils [https://www.npmjs.com/package/@mediapipe/control_utils] - Utilities to show sliders and FPS
widgets.

Note: See these demos and more at MediaPipe on CodePen [https://code.mediapipe.dev/codepen]

All of these solutions are staged in NPM [https://www.npmjs.com/package/@mediapipe]. You can install any package
locally with npm install. Example:

npm install @mediapipe/holistic.

If you would rather not stage these locally, you can rely on a CDN (e.g.,
jsDelivr [https://www.jsdelivr.com/]). This will allow you to add scripts
directly to your HTML:

<head>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/drawing_utils@0.1/drawing_utils.js" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/holistic@0.1/holistic.js" crossorigin="anonymous"></script>
</head>

Note: You can specify version numbers to both NPM and jsdelivr. They are
structured as <major>.<minor>.<build>. To prevent breaking changes from
affecting your work, restrict your request to a <minor> number. e.g.,
@mediapipe/holistic@0.1.

 layout: forward target: https://developers.google.com/mediapipe/ title: MediaPipe in Python parent: Getting Started has_children: true has_toc: false nav_order: 3

layout: forward
target: https://developers.google.com/mediapipe/
title: MediaPipe in Python
parent: Getting Started
has_children: true
has_toc: false
nav_order: 3

MediaPipe in Python

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Ready-to-use Python Solutions

MediaPipe offers ready-to-use yet customizable Python solutions as a prebuilt
Python package. MediaPipe Python package is available on
PyPI [https://pypi.org/project/mediapipe/] for Linux, macOS and Windows.

You can, for instance, activate a Python virtual environment:

$ python3 -m venv mp_env && source mp_env/bin/activate

Install MediaPipe Python package and start Python interpreter:

(mp_env)$ pip install mediapipe
(mp_env)$ python3

In Python interpreter, import the package and start using one of the solutions:

import mediapipe as mp
mp_face_mesh = mp.solutions.face_mesh

Tip: Use command deactivate to later exit the Python virtual environment.

To learn more about configuration options and usage examples, please find
details in each solution via the links below:

	MediaPipe Face Detection

	MediaPipe Face Mesh

	MediaPipe Hands

	MediaPipe Holistic

	MediaPipe Objectron

	MediaPipe Pose

	MediaPipe Selfie Segmentation

MediaPipe on Google Colab

	MediaPipe Face Detection Colab [https://mediapipe.page.link/face_detection_py_colab]

	MediaPipe Face Mesh Colab [https://mediapipe.page.link/face_mesh_py_colab]

	MediaPipe Hands Colab [https://mediapipe.page.link/hands_py_colab]

	MediaPipe Holistic Colab [https://mediapipe.page.link/holistic_py_colab]

	MediaPipe Objectron Colab [https://mediapipe.page.link/objectron_py_colab]

	MediaPipe Pose Colab [https://mediapipe.page.link/pose_py_colab]

	MediaPipe Pose Classification Colab (Basic) [https://mediapipe.page.link/pose_classification_basic]

	MediaPipe Pose Classification Colab (Extended) [https://mediapipe.page.link/pose_classification_extended]

	MediaPipe Selfie Segmentation Colab [https://mediapipe.page.link/selfie_segmentation_py_colab]

MediaPipe Python Framework

The ready-to-use solutions are built upon the MediaPipe Python framework, which
can be used by advanced users to run their own MediaPipe graphs in Python.
Please see here for more info.

Building MediaPipe Python Package

Follow the steps below only if you have local changes and need to build the
Python package from source. Otherwise, we strongly encourage our users to simply
run pip install mediapipe to use the ready-to-use solutions, more convenient
and much faster.

MediaPipe PyPI currently doesn’t provide aarch64 Python wheel
files. For building and using MediaPipe Python on aarch64 Linux systems such as
Nvidia Jetson and Raspberry Pi, please read
here [https://github.com/jiuqiant/mediapipe-python-aarch64].

	Make sure that Bazel and OpenCV are correctly installed and configured for
MediaPipe. Please see Installation for how to setup Bazel
and OpenCV for MediaPipe on Linux and macOS.

	Install the following dependencies.

Debian or Ubuntu:

$ sudo apt install python3-dev
$ sudo apt install python3-venv
$ sudo apt install -y protobuf-compiler

If you need to build opencv from source.
$ sudo apt install cmake

macOS:

$ brew install protobuf

If you need to build opencv from source.
$ brew install cmake

Windows:

Download the latest protoc win64 zip from
the Protobuf GitHub repo [https://github.com/protocolbuffers/protobuf/releases],
unzip the file, and copy the protoc.exe executable to a preferred location.
Please ensure that location is added into the Path environment variable.

	Activate a Python virtual environment.

$ python3 -m venv mp_env && source mp_env/bin/activate

	In the virtual environment, go to the MediaPipe repo directory.

	Install the required Python packages.

(mp_env)mediapipe$ pip3 install -r requirements.txt

	Build and install MediaPipe package.

(mp_env)mediapipe$ python3 setup.py install --link-opencv

or

(mp_env)mediapipe$ python3 setup.py bdist_wheel

	Exit from the MediaPipe repo directory and launch the Python interpreter.

 layout: forward target: https://developers.google.com/mediapipe/framework/getting_started/python_framework parent: MediaPipe in Python grand_parent: Getting Started nav_order: 1

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/python_framework
parent: MediaPipe in Python
grand_parent: Getting Started
nav_order: 1

MediaPipe Python Framework

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

The MediaPipe Python framework grants direct access to the core components of
the MediaPipe C++ framework such as Timestamp, Packet, and CalculatorGraph,
whereas the
ready-to-use Python solutions hide
the technical details of the framework and simply return the readable model
inference results back to the callers.

MediaPipe framework sits on top of
the pybind11 library [https://pybind11.readthedocs.io/en/stable/index.html].
The C++ core framework is exposed in Python via a C++/Python language binding.
The content below assumes that the reader already has a basic understanding of
the MediaPipe C++ framework. Otherwise, you can find useful information in
Framework Concepts.

Packet

The packet is the basic data flow unit in MediaPipe. A packet consists of a
numeric timestamp and a shared pointer to an immutable payload. In Python, a
MediaPipe packet can be created by calling one of the packet creator methods in
the
mp.packet_creator [https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/packet_creator.cc]
module. Correspondingly, the packet payload can be retrieved by using one of the
packet getter methods in the
mp.packet_getter [https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/packet_getter.cc]
module. Note that the packet payload becomes immutable after packet
creation. Thus, the modification of the retrieved packet content doesn’t affect
the actual payload in the packet. MediaPipe framework Python API supports the
most commonly used data types of MediaPipe (e.g., ImageFrame, Matrix, Protocol
Buffers, and the primitive data types) in the core binding. The comprehensive
table below shows the type mappings between the Python and the C++ data type
along with the packet creator and the content getter method for each data type
supported by the MediaPipe Python framework API.

Python Data Type | C++ Data Type | Packet Creator | Content Getter
———————————— | —————————– | —— | ————–
bool | bool | create_bool(True) | get_bool(packet)
int or np.intc | int_t | create_int(1) | get_int(packet)
int or np.int8 | int8_t | create_int8(27-1) | get_int(packet)
int or np.int16 | int16_t | create_int16(215-1) | get_int(packet)
int or np.int32 | int32_t | create_int32(231-1) | get_int(packet)
int or np.int64 | int64_t | create_int64(263-1) | get_int(packet)
int or np.uint8 | uint8_t | create_uint8(28-1) | get_uint(packet)
int or np.uint16 | uint16_t | create_uint16(216-1) | get_uint(packet)
int or np.uint32 | uint32_t | create_uint32(232-1) | get_uint(packet)
int or np.uint64 | uint64_t | create_uint64(264-1) | get_uint(packet)
float or np.float32 | float | create_float(1.1) | get_float(packet)
float or np.double | double | create_double(1.1) | get_float(packet)
str (UTF-8) | std::string | create_string(’abc’) | get_str(packet)
bytes | std::string | create_string(b’\xd0\xd0\xd0’) | get_bytes(packet)
mp.Packet | mp::Packet | create_packet(p) | get_packet(packet)
List[bool] | std::vector<bool> | create_bool_vector([True, False]) | get_bool_list(packet)
List[int] or List[np.intc] | int[] | create_int_array([1, 2, 3]) | get_int_list(packet, size=10)
List[int] or List[np.intc] | std::vector<int> | create_int_vector([1, 2, 3]) | get_int_list(packet)
List[float] or List[np.float] | float[] | create_float_arrary([0.1, 0.2]) | get_float_list(packet, size=10)
List[float] or List[np.float] | std::vector<float> | create_float_vector([0.1, 0.2]) | get_float_list(packet, size=10)
List[str] | std::vector<std::string> | create_string_vector([’a’]) | get_str_list(packet)
List[mp.Packet] | std::vector<mp::Packet> | create_packet_vector([packet1, packet2]) | get_packet_list(p)
Mapping[str, Packet] | std::map<std::string, Packet> | create_string_to_packet_map({’a’: packet1, ‘b’: packet2}) | get_str_to_packet_dict(packet)
np.ndarray(cv.mat and PIL.Image) | mp::ImageFrame | create_image_frame(format=ImageFormat.SRGB, data=mat) | get_image_frame(packet)
np.ndarray | mp::Matrix | create_matrix(data) | get_matrix(packet)
Google Proto Message | Google Proto Message | create_proto(proto) | get_proto(packet)
List[Proto] | std::vector<Proto> | n/a | get_proto_list(packet)

 layout: forward target: https://developers.google.com/mediapipe/framework/getting_started/troubleshooting title: Troubleshooting parent: Getting Started nav_order: 10

layout: forward
target: https://developers.google.com/mediapipe/framework/getting_started/troubleshooting
title: Troubleshooting
parent: Getting Started
nav_order: 10

Troubleshooting

{: .no_toc }

	TOC
{:toc}

Attention: Thanks for your interest in MediaPipe! We have moved to
https://developers.google.com/mediapipe
as the primary developer documentation site for MediaPipe as of April 3, 2023.

Missing Python binary path

The error message:

ERROR: An error occurred during the fetch of repository 'local_execution_config_python':
 Traceback (most recent call last):
 File "/sandbox_path/external/org_tensorflow/third_party/py/python_configure.bzl", line 208
 get_python_bin(repository_ctx)
 ...
Repository command failed

usually indicates that Bazel fails to find the local Python binary. To solve
this issue, please first find where the python binary is and then add
--action_env PYTHON_BIN_PATH=<path to python binary> to the Bazel command. For
example, you can switch to use the system default python3 binary by the
following command:

bazel build -c opt \
 --define MEDIAPIPE_DISABLE_GPU=1 \
 --action_env PYTHON_BIN_PATH=$(which python3) \
 mediapipe/examples/desktop/hello_world

Missing necessary Python packages

The error message:

ImportError: No module named numpy
Is numpy installed?

usually indicates that certain Python packages are not installed. Please run
pip install or pip3 install depending on your Python binary version to
install those packages.

Fail to fetch remote dependency repositories

The error message:

ERROR: An error occurred during the fetch of repository 'org_tensorflow':
 java.io.IOException: Error downloading [https://mirror.bazel.build/github.com/tensorflow/tensorflow/archive/77e9ffb9b2bfb1a4f7056e62d84039626923e328.tar.gz, https://github.com/tensorflow/tensorflow/archive/77e9ffb9b2bfb1a4f7056e62d84039626923e328.tar.gz] to /sandbox_path/external/org_tensorflow/77e9ffb9b2bfb1a4f7056e62d84039626923e328.tar.gz: Tried to reconnect at offset 9,944,151 but server didn't support it

or

WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_swift/releases/download/0.12.1/rules_swift.0.12.1.tar.gz failed: class java.net.ConnectException Connection timed out (Connection timed out)

usually indicates that Bazel fails to download necessary dependency repositories
that MediaPipe needs. MediaPipe has several dependency repositories that are
hosted by Google sites. In some regions, you may need to set up a network proxy
or use a VPN to access those resources. You may also need to append
--host_jvm_args "-DsocksProxyHost=<ip address> -DsocksProxyPort=<port number>"
to the Bazel command. See
this GitHub issue [https://github.com/google/mediapipe/issues/581#issuecomment-610356857]
for more details.

If you believe that it’s not a network issue, another possibility is that some
resources could be temporarily unavailable, please run bazel clean --expunge
and retry it later. If it’s still not working, please file a GitHub issue with
the detailed error message.

Incorrect MediaPipe OpenCV config

The error message:

error: undefined reference to 'cv::String::deallocate()'
error: undefined reference to 'cv::String::allocate(unsigned long)'
error: undefined reference to 'cv::VideoCapture::VideoCapture(cv::String const&)'
...
error: undefined reference to 'cv::putText(cv::InputOutputArray const&, cv::String const&, cv::Point, int, double, cv::Scalar, int, int, bool)'

usually indicates that OpenCV is not properly configured for MediaPipe. Please
take a look at the “Install OpenCV and FFmpeg” sections in
Installation to see how to modify MediaPipe’s WORKSPACE and
linux_opencv/macos_opencv/windows_opencv.BUILD files for your local opencv
libraries. This GitHub issue [https://github.com/google/mediapipe/issues/666]
may also help.

Python pip install failure

The error message:

ERROR: Could not find a version that satisfies the requirement mediapipe
ERROR: No matching distribution found for mediapipe

after running pip install mediapipe usually indicates that there is no qualified MediaPipe Python for your system.
Please note that MediaPipe Python PyPI officially supports the 64-bit
version of Python 3.7 to 3.10 on the following OS:

	x86_64 Linux

	x86_64 macOS 10.15+

	amd64 Windows

If the OS is currently supported and you still see this error, please make sure
that both the Python and pip binary are for Python 3.7 to 3.10. Otherwise,
please consider building the MediaPipe Python package locally by following the
instructions here.

Python DLL load failure on Windows

The error message:

ImportError: DLL load failed: The specified module could not be found

usually indicates that the local Windows system is missing Visual C++
redistributable packages and/or Visual C++ runtime DLLs. This can be solved by
either installing the official
vc_redist.x64.exe [https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0]
or installing the “msvc-runtime” Python package by running

$ python -m pip install msvc-runtime

Please note that the “msvc-runtime” Python package is not released or maintained
by Microsoft.

Native method not found

The error message:

java.lang.UnsatisfiedLinkError: No implementation found for void com.google.wick.Wick.nativeWick

usually indicates that a needed native library, such as /libwickjni.so has not
been loaded or has not been included in the dependencies of the app or cannot be
found for some reason. Note that Java requires every native library to be
explicitly loaded using the function System.loadLibrary.

No registered calculator found

The error message:

No registered object with name: OurNewCalculator; Unable to find Calculator "OurNewCalculator"

usually indicates that OurNewCalculator is referenced by name in a
CalculatorGraphConfig [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto] but that the library target for OurNewCalculator has
not been linked to the application binary. When a new calculator is added to a
calculator graph, that calculator must also be added as a build dependency of
the applications using the calculator graph.

This error is caught at runtime because calculator graphs reference their
calculators by name through the field CalculatorGraphConfig::Node:calculator.
When the library for a calculator is linked into an application binary, the
calculator is automatically registered by name through the
REGISTER_CALCULATOR [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_registry.h] macro using the registration.h [https://github.com/google/mediapipe/tree/master/mediapipe/framework/deps/registration.h] library. Note that
REGISTER_CALCULATOR [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_registry.h] can register a calculator with a namespace prefix,
identical to its C++ namespace. In this case, the calculator graph must also use
the same namespace prefix.

Out Of Memory error

Exhausting memory can be a symptom of too many packets accumulating inside a
running MediaPipe graph. This can occur for a number of reasons, such as:

	Some calculators in the graph simply can’t keep pace with the arrival of
packets from a realtime input stream such as a video camera.

	Some calculators are waiting for packets that will never arrive.

For problem (1), it may be necessary to drop some old packets in older to
process the more recent packets. For some hints, see:
How to process realtime input streams.

For problem (2), it could be that one input stream is lacking packets for some
reason. A device or a calculator may be misconfigured or may produce packets
only sporadically. This can cause downstream calculators to wait for many
packets that will never arrive, which in turn causes packets to accumulate on
some of their input streams. MediaPipe addresses this sort of problem using
“timestamp bounds”. For some hints see:
How to process realtime input streams.

The MediaPipe setting CalculatorGraphConfig::max_queue_size [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto] limits the
number of packets enqueued on any input stream by throttling inputs to the
graph. For realtime input streams, the number of packets queued at an input
stream should almost always be zero or one. If this is not the case, you may see
the following warning message:

Resolved a deadlock by increasing max_queue_size of input stream

Also, the setting CalculatorGraphConfig::report_deadlock [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator.proto] can be set to cause
graph run to fail and surface the deadlock as an error, such that max_queue_size
to acts as a memory usage limit.

Graph hangs

Many applications will call CalculatorGraph::CloseAllPacketSources [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_graph.h] and
CalculatorGraph::WaitUntilDone [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_graph.h] to finish or suspend execution of a MediaPipe
graph. The objective here is to allow any pending calculators or packets to
complete processing, and then to shutdown the graph. If all goes well, every
stream in the graph will reach Timestamp::Done [https://github.com/google/mediapipe/tree/master/mediapipe/framework/timestamp.h], and every calculator will
reach CalculatorBase::Close [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.h], and then CalculatorGraph::WaitUntilDone [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_graph.h]
will complete successfully.

If some calculators or streams cannot reach state Timestamp::Done [https://github.com/google/mediapipe/tree/master/mediapipe/framework/timestamp.h] or
CalculatorBase::Close [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_base.h], then the method CalculatorGraph::Cancel [https://github.com/google/mediapipe/tree/master/mediapipe/framework/calculator_graph.h] can be
called to terminate the graph run without waiting for all pending calculators
and packets to complete.

Output timing is uneven

Some realtime MediaPipe graphs produce a series of video frames for viewing as a
video effect or as a video diagnostic. Sometimes, a MediaPipe graph will produce
these frames in clusters, for example when several output frames are
extrapolated from the same cluster of input frames. If the outputs are presented
as they are produced, some output frames are immediately replaced by later
frames in the same cluster, which makes the results hard to see and evaluate
visually. In cases like this, the output visualization can be improved by
presenting the frames at even intervals in real time.

MediaPipe addresses this use case by mapping timestamps to points in real time.
Each timestamp indicates a time in microseconds, and a calculator such as
LiveClockSyncCalculator can delay the output of packets to match their
timestamps. This sort of calculator adjusts the timing of outputs such that:

	The time between outputs corresponds to the time between timestamps as
closely as possible.

	Outputs are produced with the smallest delay possible.

CalculatorGraph lags behind inputs

For many realtime MediaPipe graphs, low latency is an objective. MediaPipe
supports “pipelined” style parallel processing in order to begin processing of
each packet as early as possible. Normally the lowest possible latency is the
total time required by each calculator along a “critical path” of successive
calculators. The latency of the a MediaPipe graph could be worse than the ideal
due to delays introduced to display frames a even intervals as described in
Output timing is uneven.

If some of the calculators in the graph cannot keep pace with the realtime input
streams, then latency will continue to increase, and it becomes necessary to
drop some input packets. The recommended technique is to use the MediaPipe
calculators designed specifically for this purpose such as
FlowLimiterCalculator [https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/flow_limiter_calculator.cc] as described in
How to process realtime input streams.

 layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: AutoFlip (Saliency-aware Video Cropping) parent: MediaPipe Legacy Solutions nav_order: 14

layout: forward
target: https://developers.google.com/mediapipe/solutions/guide#legacy
title: AutoFlip (Saliency-aware Video Cropping)
parent: MediaPipe Legacy Solutions
nav_order: 14

AutoFlip: Saliency-aware Video Cropping

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: Box Tracking parent: MediaPipe Legacy Solutions nav_order: 10

layout: forward
target: https://developers.google.com/mediapipe/solutions/guide#legacy
title: Box Tracking
parent: MediaPipe Legacy Solutions
nav_order: 10

MediaPipe Box Tracking

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/vision/face_detector/ title: Face Detection parent: MediaPipe Legacy Solutions nav_order: 1

layout: forward
target: https://developers.google.com/mediapipe/solutions/vision/face_detector/
title: Face Detection
parent: MediaPipe Legacy Solutions
nav_order: 1

MediaPipe Face Detection

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/vision/face_landmarker/ title: Face Mesh parent: MediaPipe Legacy Solutions nav_order: 2

layout: forward
target: https://developers.google.com/mediapipe/solutions/vision/face_landmarker/
title: Face Mesh
parent: MediaPipe Legacy Solutions
nav_order: 2

MediaPipe Face Mesh

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/vision/image_segmenter/ title: Hair Segmentation parent: MediaPipe Legacy Solutions nav_order: 8

layout: forward
target: https://developers.google.com/mediapipe/solutions/vision/image_segmenter/
title: Hair Segmentation
parent: MediaPipe Legacy Solutions
nav_order: 8

MediaPipe Hair Segmentation

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/vision/hand_landmarker title: Hands parent: MediaPipe Legacy Solutions nav_order: 4

layout: forward
target: https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
title: Hands
parent: MediaPipe Legacy Solutions
nav_order: 4

MediaPipe Hands

{: .no_toc }

 layout: forward target: https://github.com/google/mediapipe/blob/master/docs/solutions/holistic.md title: Holistic parent: MediaPipe Legacy Solutions nav_order: 6

layout: forward
target: https://github.com/google/mediapipe/blob/master/docs/solutions/holistic.md
title: Holistic
parent: MediaPipe Legacy Solutions
nav_order: 6

MediaPipe Holistic

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: Instant Motion Tracking parent: MediaPipe Legacy Solutions nav_order: 11

layout: forward
target: https://developers.google.com/mediapipe/solutions/guide#legacy
title: Instant Motion Tracking
parent: MediaPipe Legacy Solutions
nav_order: 11

MediaPipe Instant Motion Tracking

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/vision/face_landmarker/ title: Iris parent: MediaPipe Legacy Solutions nav_order: 3

layout: forward
target: https://developers.google.com/mediapipe/solutions/vision/face_landmarker/
title: Iris
parent: MediaPipe Legacy Solutions
nav_order: 3

MediaPipe Iris

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: KNIFT (Template-based Feature Matching) parent: MediaPipe Legacy Solutions nav_order: 13

layout: forward
target: https://developers.google.com/mediapipe/solutions/guide#legacy
title: KNIFT (Template-based Feature Matching)
parent: MediaPipe Legacy Solutions
nav_order: 13

MediaPipe KNIFT

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: Dataset Preparation with MediaSequence parent: MediaPipe Legacy Solutions nav_order: 15

layout: forward
target: https://developers.google.com/mediapipe/solutions/guide#legacy
title: Dataset Preparation with MediaSequence
parent: MediaPipe Legacy Solutions
nav_order: 15

Dataset Preparation with MediaSequence

{: .no_toc }

 layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: Models and Model Cards parent: MediaPipe Legacy Solutions nav_order: 30

layout: forward
target: https://developers.google.com/mediapipe/solutions/guide#legacy
title: Models and Model Cards
parent: MediaPipe Legacy Solutions
nav_order: 30

MediaPipe Models and Model Cards

{: .no_toc }

	TOC
{:toc}

Attention: Thank you for your interest in MediaPipe Solutions.
We have ended support for
these MediaPipe Legacy Solutions [https://developers.google.com/mediapipe/solutions/guide#legacy]
as of March 1, 2023. All other
MediaPipe Legacy Solutions will be upgraded [https://developers.google.com/mediapipe/solutions/guide#legacy]
to a new MediaPipe Solution. The code repository and prebuilt binaries for all
MediaPipe Legacy Solutions will continue to be provided on an as-is basis.
We encourage you to check out the new MediaPipe Solutions at:
https://developers.google.com/mediapipe/solutions

Face Detection [https://google.github.io/mediapipe/solutions/face_detection]

	Short-range model (best for faces within 2 meters from the camera):
TFLite model [https://storage.googleapis.com/mediapipe-assets/face_detection_short_range.tflite],
TFLite model quantized for EdgeTPU/Coral [https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/models/face-detector-quantized_edgetpu.tflite],
Model card [https://mediapipe.page.link/blazeface-mc]

	Full-range model (dense, best for faces within 5 meters from the camera):
TFLite model [https://storage.googleapis.com/mediapipe-assets/face_detection_full_range.tflite],
Model card [https://mediapipe.page.link/blazeface-back-mc]

	Full-range model (sparse, best for faces within 5 meters from the camera):
TFLite model [https://storage.googleapis.com/mediapipe-assets/face_detection_full_range_sparse.tflite],
Model card [https://mediapipe.page.link/blazeface-back-sparse-mc]

Full-range dense and sparse models have the same quality in terms of
F-score [https://en.wikipedia.org/wiki/F-score] however differ in underlying
metrics. The dense model is slightly better in
Recall [https://en.wikipedia.org/wiki/Precision_and_recall] whereas the sparse
model outperforms the dense one in
Precision [https://en.wikipedia.org/wiki/Precision_and_recall]. Speed-wise
sparse model is ~30% faster when executing on CPU via
XNNPACK [https://github.com/google/XNNPACK] whereas on GPU the models
demonstrate comparable latencies. Depending on your application, you may prefer
one over the other.

Face Mesh [https://google.github.io/mediapipe/solutions/face_mesh]

	Face landmark model:
TFLite model [https://storage.googleapis.com/mediapipe-assets/face_landmark.tflite],
TF.js model [https://tfhub.dev/mediapipe/facemesh/1]

	Face landmark model w/ attention (aka Attention Mesh):
TFLite model [https://storage.googleapis.com/mediapipe-assets/face_landmark_with_attention.tflite]

	Model card [https://mediapipe.page.link/facemesh-mc],
Model card (w/ attention) [https://mediapipe.page.link/attentionmesh-mc]

Iris [https://google.github.io/mediapipe/solutions/iris]

	Iris landmark model:
TFLite model [https://storage.googleapis.com/mediapipe-assets/iris_landmark.tflite]

	Model card [https://mediapipe.page.link/iris-mc]

Hands [https://google.github.io/mediapipe/solutions/hands]

	Palm detection model:
TFLite model (lite) [https://storage.googleapis.com/mediapipe-assets/palm_detection_lite.tflite],
TFLite model (full) [https://storage.googleapis.com/mediapipe-assets/palm_detection_full.tflite],
TF.js model [https://tfhub.dev/mediapipe/handdetector/1]

	Hand landmark model:
TFLite model (lite) [https://storage.googleapis.com/mediapipe-assets/hand_landmark_lite.tflite],
TFLite model (full) [https://storage.googleapis.com/mediapipe-assets/hand_landmark_full.tflite],
TF.js model [https://tfhub.dev/mediapipe/handskeleton/1]

	Model card [https://mediapipe.page.link/handmc]

Pose [https://google.github.io/mediapipe/solutions/pose]

	Pose detection model:
TFLite model [https://storage.googleapis.com/mediapipe-assets/pose_detection.tflite]

	Pose landmark model:
TFLite model (lite) [https://storage.googleapis.com/mediapipe-assets/pose_landmark_lite.tflite],
TFLite model (full) [https://storage.googleapis.com/mediapipe-assets/pose_landmark_full.tflite],
TFLite model (heavy) [https://storage.googleapis.com/mediapipe-assets/pose_landmark_heavy.tflite]

	Model card [https://mediapipe.page.link/blazepose-mc]

Holistic [https://google.github.io/mediapipe/solutions/holistic]

	Hand recrop model:
TFLite model [https://storage.googleapis.com/mediapipe-assets/hand_recrop.tflite]

Selfie Segmentation [https://google.github.io/mediapipe/solutions/selfie_segmentation]

	TFLite model (general) [https://storage.googleapis.com/mediapipe-assets/selfie_segmentation.tflite]

	TFLite model (landscape) [https://storage.googleapis.com/mediapipe-assets/selfie_segmentation_landscape.tflite]

	Model card [https://mediapipe.page.link/selfiesegmentation-mc]

Hair Segmentation [https://google.github.io/mediapipe/solutions/hair_segmentation]

	TFLite model [https://storage.googleapis.com/mediapipe-assets/hair_segmentation.tflite]

	Model card [https://mediapipe.page.link/hairsegmentation-mc]

Object Detection [https://google.github.io/mediapipe/solutions/object_detection]

	TFLite model [https://storage.googleapis.com/mediapipe-assets/ssdlite_object_detection.tflite]

	TFLite model quantized for EdgeTPU/Coral [https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/models/object-detector-quantiz